Suppr超能文献

脑机接口竞赛。III:验证解决实际脑机接口问题的替代方法。

The BCI competition. III: Validating alternative approaches to actual BCI problems.

作者信息

Blankertz Benjamin, Müller Klaus-Robert, Krusienski Dean J, Schalk Gerwin, Wolpaw Jonathan R, Schlögl Alois, Pfurtscheller Gert, Millán José del R, Schröder Michael, Birbaumer Niels

机构信息

Fraunhofer FIRST (IDA), D-12489 Berlin, Germany.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):153-9. doi: 10.1109/TNSRE.2006.875642.

Abstract

A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.

摘要

脑机接口(BCI)是一种允许用户通过大脑活动控制外部设备的系统。尽管几十年前就已给出概念验证,但将用户意图可靠地转化为设备控制命令仍是一项重大挑战。成功需要两个自适应控制器的有效交互:产生编码意图的大脑活动的用户大脑,以及将该活动转化为设备控制命令的BCI系统。为了促进这种交互,许多实验室正在探索各种信号分析技术,以提高BCI系统对用户的适应性。在文献中,许多机器学习和模式分类算法在离线分析中应用于BCI数据时都取得了令人印象深刻的结果。然而,评估它们在实际在线使用中的相对价值则更加困难。已组织BCI数据竞赛以对替代方法进行客观的正式评估。受前两届BCI竞赛极大兴趣的推动,我们组织了第三届BCI竞赛,以解决BCI研究中一些最困难和重要的分析问题。本文描述了提供给参赛者的数据集,并概述了结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验