School of Automation, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
J Neural Eng. 2013 Feb;10(1):016002. doi: 10.1088/1741-2560/10/1/016002. Epub 2012 Dec 10.
Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an 'adaptive Laplacian (ALAP) filter', can provide better performance for SMR-based BCIs.
An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible.
Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP.
Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
感觉运动节律(SMR)是头皮上记录的来自感觉运动皮层的脑电图(EEG)中的 8-30Hz 振荡,它随运动和/或运动想象而变化。许多脑机接口(BCI)研究表明,人们可以学习控制 SMR 幅度,并可以使用该控制来在一个、两个或三个维度上移动光标和其他物体。与此同时,如果基于 SMR 的 BCI 要对神经肌肉障碍患者有用,则必须大大提高其准确性和可靠性。这些 BCI 通常使用空间滤波方法,如公共平均参考(CAR)、拉普拉斯(LAP)滤波器或公共空间模式(CSP)滤波器,以提高 EEG 的信噪比。在这里,我们检验了一个假设,即一种称为“自适应拉普拉斯(ALAP)滤波器”的新滤波器设计可以为基于 SMR 的 BCI 提供更好的性能。
ALAP 滤波器采用高斯核构建通道权重的平滑空间梯度,然后同时寻求该空间滤波器的最优核半径和线性岭回归的正则化参数。这种优化是基于通过梯度下降法最小化留一交叉验证误差,并在计算上是可行的。
我们使用来自 22 个人的各种 BCI 数据,将 ALAP 滤波器的性能与 CAR、小 LAP、大 LAP 和 CSP 滤波器进行比较。使用大量通道和有限的数据,ALAP 在分类准确性和均方误差方面均显著优于 CSP、CAR、小 LAP 和大 LAP。使用受限在运动区域的较少通道,ALAP 仍然优于 CAR、小 LAP 和大 LAP,但与 CSP 相当。
因此,ALAP 可能有助于提高基于 SMR 的 BCI 的准确性和鲁棒性。