Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
J Muscle Res Cell Motil. 2020 Mar;41(1):163-173. doi: 10.1007/s10974-019-09541-x. Epub 2019 Jul 16.
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
近几十年来,人们付出了大量努力来理解作用于肌动蛋白网络的机械应力如何改变肌动蛋白的组装和解体动力学。然而,在体外和细胞内都有相互矛盾的报告。在这篇综述中,我们讨论了之前试图评估肌球蛋白对丝状肌动蛋白(F-actin)周转率的定量活细胞实验中的一些关注点。特别是,我们强调了定量活细胞成像中产生误差的机制,即肌动蛋白结合探针的对流诱导的再分布。使用我们改进的基于电穿孔的单分子斑点(eSiMS)显微镜技术直接在单分子水平上观察肌动蛋白的周转,可以克服这些问题。我们介绍了我们最近的单分子分析,该分析明确证明了肌球蛋白对活细胞中 F-actin 稳定性的依赖性调节。我们还讨论了 eSiMS 显微镜在分析横纹肌细胞中肌动蛋白重塑中的可能应用。