Cytoskeleton Dynamics and Cell Motility Group, CNRS, UPR 3082, Laboratoire d'Enzymologie et Biochimie Structurales, 91198 Gif-sur-Yvette, France.
Annu Rev Biophys. 2010;39:449-70. doi: 10.1146/annurev-biophys-051309-103849.
Recent advances in structural, biochemical, biophysical, and live cell imaging approaches have furthered our understanding of the molecular mechanisms by which regulated assembly dynamics of actin filaments drive motile processes. Attention is focused on lamellipodium protrusion, powered by the turnover of a branched filament array. ATP hydrolysis on actin is the key reaction that allows filament treadmilling. It regulates barbed-end dynamics and length fluctuations at steady state and specifies the functional interaction of actin with essential regulatory proteins such as profilin and ADF/cofilin. ATP hydrolysis on actin and Arp2/3 acts as a timer, regulating the assembly and disassembly of the branched array to generate tropomyosin-mediated heterogeneity in the structure and dynamics of the lamellipodial network. The detailed molecular mechanisms of ATP hydrolysis/Pi release on F-actin remain elusive, as well as the mechanism of filament branching with Arp2/3 complex or that of the formin-driven processive actin assembly. Novel biophysical methods involving single-molecule measurements should foster progress in these crucial issues.
近年来,结构、生化、生物物理和活细胞成像方法的进展进一步加深了我们对肌动蛋白丝调节组装动力学驱动运动过程的分子机制的理解。研究的重点是由分支丝状阵列的周转率驱动的片状伪足突出。肌动蛋白上的 ATP 水解是允许丝状行走的关键反应。它调节棘状末端的动力学和在稳定状态下的长度波动,并指定肌动蛋白与必需的调节蛋白(如原肌球蛋白和 ADF/cofilin)的功能相互作用。肌动蛋白上的 ATP 水解和 Arp2/3 作为定时器,调节分支阵列的组装和拆卸,以产生肌球蛋白介导的片状伪足网络结构和动力学的异质性。F-肌动蛋白上的 ATP 水解/ Pi 释放的详细分子机制以及 Arp2/3 复合物的丝状分支机制或形成素驱动的连续肌动蛋白组装机制仍然难以捉摸。涉及单分子测量的新的生物物理方法应该会促进这些关键问题的进展。