Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan.
Cytoskeleton (Hoboken). 2013 Apr;70(4):179-90. doi: 10.1002/cm.21098. Epub 2013 Mar 5.
Actin forms a polarized filament that grows at the barbed end and shrinks at the pointed end. This phenomenon known as "treadmilling" is believed to govern actin filament turnover. However, in the cell, whether actin turnover proceeds by treadmilling or by other reactions, including filament severing, is a debatable issue. Our previous fluorescence single-molecule speckle (SiMS) analysis has yielded data about the lifetime distribution of F-actin, the uncapping kinetics of both the barbed and pointed ends of the filaments and the elongation rate of the barbed end in lamellipodia. Given these parameters, we estimated the rate of disassembly of the pointed end required to achieve the observed fast actin turnover under the assumption of exclusive filament treadmilling. We derived a method for calculating the lifetime of an individual F-actin subunit at a given position in the Arp2/3 complex-nucleated filament. Extension of this derivation revealed that in the absence of disassembly in the other portions of the filaments, at least 100-fold acceleration of the in vitro pointed end disassembly rate is required to achieve observed F-actin lifetime distribution in lamellipodia. It is, therefore, unlikely that treadmilling solely accounts for the actin filament turnover in vivo. Accumulating evidence obtained by SiMS analysis implies a non-treadmilling actin turnover mechanism in which a substantial amount of F-actin might disassemble near the barbed end of the filament.
肌动蛋白形成一种极性纤维,在有棘突的末端生长,在尖端末端收缩。这种现象被称为“ treadmilling”,被认为控制着肌动蛋白纤维的周转率。然而,在细胞中,肌动蛋白的周转率是通过 treadmilling 还是通过其他反应(包括纤维切断)进行,这是一个有争议的问题。我们之前的荧光单分子斑点(SiMS)分析已经提供了关于 F-肌动蛋白的寿命分布、纤维的有棘突和尖端末端的去帽动力学以及片状伪足中纤维有棘突的延伸速度的数据。考虑到这些参数,我们根据纤维 treadmilling 的假设,估算了实现观察到的快速肌动蛋白周转率所需的尖端末端解组装速率。我们为在 Arp2/3 复合物引发的纤维中的特定位置计算单个 F-肌动蛋白亚基的寿命提供了一种方法。这种推导的扩展表明,在纤维的其他部分没有解组装的情况下,至少需要体外尖端末端解组装速率加速 100 倍,才能在片状伪足中实现观察到的 F-肌动蛋白寿命分布。因此,肌动蛋白 treadmilling 不太可能单独解释体内肌动蛋白纤维的周转率。通过 SiMS 分析获得的越来越多的证据表明,存在一种非 treadmilling 的肌动蛋白周转率机制,其中大量的 F-肌动蛋白可能在纤维的有棘突末端附近解组装。