Suppr超能文献

WebParc:一种用于分析 MRI 中风的地形和体积的工具。

WebParc: a tool for analysis of the topography and volume of stroke from MRI.

机构信息

Center for Morphometric Analysis, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA, USA.

出版信息

Med Biol Eng Comput. 2010 Mar;48(3):215-28. doi: 10.1007/s11517-009-0571-8.

Abstract

The quantitative assessment of the anatomic consequences of cerebral infarction is critical in the study of the etiology and therapeutic response in patients with stroke. We present here an overview of the operation of "WebParc," a computational system that provides measures of stroke lesion volume and location with respect to canonical forebrain neural systems nomenclature. Using a web-based interface, clinical imaging data can be registered to a template brain that contains a comprehensive set of anatomic structures. Upon delineation of the lesion, we can express the size and localization of the lesion in terms of the regions that are intersected within the template. We demonstrate the application of the system using MRI-based diffusion-weighted imaging and document measures of the validity and reliability of its uses. Intra- and inter-rater reliability is demonstrated, and characterized relative to the various classes of anatomic regions that can be assessed. The WebParc system has been developed to meet criteria of both efficiency and intuitive operator use in the real time analysis of stroke anatomy, so as to be useful in support of clinical care and clinical research studies. This article is an overview of its base-line operation with quantitative anatomic characterization of lesion size and location in terms of stroke distribution within the separate gray and white matter compartments of the brain.

摘要

脑梗死解剖学后果的定量评估对于研究中风患者的病因和治疗反应至关重要。我们在此介绍了“WebParc”计算系统的操作概述,该系统提供了基于经典前脑神经系统命名法的中风病变体积和位置的度量。使用基于网络的界面,可以将临床成像数据注册到包含全面解剖结构集的模板大脑中。在描绘病变后,我们可以根据在模板中相交的区域来表示病变的大小和位置。我们使用基于 MRI 的弥散加权成像演示了系统的应用,并记录了其使用的有效性和可靠性的度量。证明了该系统的内部和内部可靠性,并相对于可以评估的各种解剖区域类别进行了特征描述。WebParc 系统的开发旨在满足实时分析中风解剖结构的效率和直观操作的标准,以便为临床护理和临床研究提供支持。本文概述了其基本操作,以及根据大脑灰白质分隔室中风分布的病变大小和位置的定量解剖学特征。

相似文献

9
Machine learning identifies stroke features between species.机器学习识别物种间的中风特征。
Theranostics. 2021 Jan 1;11(6):3017-3034. doi: 10.7150/thno.51887. eCollection 2021.

引用本文的文献

1
Taxonomy of Acute Stroke: Imaging, Processing, and Treatment.急性中风的分类:成像、处理与治疗
Diagnostics (Basel). 2024 May 19;14(10):1057. doi: 10.3390/diagnostics14101057.
3
A CAD System for Hemorrhagic Stroke.一种用于出血性中风的计算机辅助诊断系统。
Neuroradiol J. 2014 Sep;27(4):409-16. doi: 10.15274/NRJ-2014-10080. Epub 2014 Aug 29.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验