Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México D.F. 09340, Mexico.
J Chem Phys. 2010 Jan 7;132(1):014701. doi: 10.1063/1.3279128.
The liquid-vapor phase equilibria and surface tension of the TIP4P/2005 water model is obtained by using the Ewald summation method to determine the long range Lennard-Jones and electrostatic interactions. The method is implemented in a straightforward manner into standard simulation programs. The computational cost of using Ewald sums in dispersion interactions of water is estimated in direct simulation of interfaces. The results of this work at 300 K show a dramatic change in surface tension with an oscillatory behavior for surface areas smaller than 5x5sigma(2), where sigma is the Lennard-Jones oxygen diameter. The amplitude of such oscillations substantially decreases with temperature. Finite size effects are less important on coexisting densities. Phase equilibria and interfacial properties can be determined using a small number of water molecules; their fluctuations are around the same size of simulation error at all temperatures, even in systems where the interfaces are separated a few molecular diameters only. The difference in surface tension of this work compared to the results of other authors is not significant (on the contrary, there is a good agreement). What should be stressed is the different and more consistent approach to obtain the surface tension using the Ewald sums for dispersion interactions. There are two relevant aspects at the interface: An adsorption of water molecules is observed at small surface areas and its thickness systematically increases with system size.
采用 Ewald 求和法来确定长程 Lennard-Jones 和静电相互作用,从而得到 TIP4P/2005 水模型的液-气相平衡和表面张力。该方法直接应用于标准模拟程序中。在界面的直接模拟中,估算了在水中色散相互作用中使用 Ewald 求和的计算成本。这项在 300 K 下的工作结果表明,表面张力随着表面积小于 5x5sigma(2)(sigma 是 Lennard-Jones 氧原子直径)而呈现出剧烈的变化,表现出振荡行为。这种振荡的幅度随温度显著降低。在共存密度下,有限尺寸效应的影响较小。可以使用少量水分子来确定相平衡和界面性质;在所有温度下,它们的波动大小与模拟误差相同,即使在界面仅相隔几个分子直径的系统中也是如此。与其他作者的结果相比,这项工作的表面张力差异并不显著(相反,有很好的一致性)。应该强调的是,使用 Ewald 求和法来获得色散相互作用的表面张力是一种不同且更一致的方法。在界面上有两个相关方面:在小的表面积上观察到水分子的吸附,并且其厚度随着系统尺寸的增加而系统地增加。