Suppr超能文献

蛋白质折叠中的坐标相关扩散。

Coordinate-dependent diffusion in protein folding.

机构信息

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1088-93. doi: 10.1073/pnas.0910390107. Epub 2009 Dec 28.

Abstract

Diffusion on a low-dimensional free-energy surface is a remarkably successful model for the folding dynamics of small single-domain proteins. Complicating the interpretation of both simulations and experiments is the expectation that the effective diffusion coefficient D will in general depend on the position along the folding coordinate, and this dependence may vary for different coordinates. Here we explore the position dependence of D, its connection to protein internal friction, and the consequences for the interpretation of single-molecule experiments. We find a large decrease in D from unfolded to folded, for reaction coordinates that directly measure fluctuations in Cartesian configuration space, including those probed in single-molecule experiments. In contrast, D is almost independent of Q, the fraction of native amino acid contacts: Near the folded state, small fluctuations in position cause large fluctuations in Q, and vice versa for the unfolded state. In general, position-dependent free energies and diffusion coefficients for any two good reaction coordinates that separate reactant, product, and transition states, are related by a simple transformation, as we demonstrate. With this transformation, we obtain reaction coordinates with position-invariant D. The corresponding free-energy surfaces allow us to justify the assumptions used in estimating the speed limit for protein folding from experimental measurements of the reconfiguration time in the unfolded state, and also reveal intermediates hidden in the original free-energy projection. Lastly, we comment on the design of future single-molecule experiments that probe the position dependence of D directly.

摘要

在低维自由能表面上的扩散是一种非常成功的模型,用于解释小分子单域蛋白质的折叠动力学。模拟和实验的解释都变得复杂,因为人们普遍期望有效扩散系数 D 通常会随折叠坐标的位置而变化,并且这种依赖性可能因不同的坐标而异。在这里,我们探讨了 D 的位置依赖性、它与蛋白质内部摩擦的关系,以及对单分子实验解释的影响。我们发现,对于直接测量笛卡尔构象空间波动的反应坐标,包括在单分子实验中探测到的那些,从展开态到折叠态,D 会大幅下降。相比之下,D 与 Q(天然氨基酸接触的分数)几乎无关:在折叠态附近,位置的小波动会导致 Q 的大波动,而在展开态则相反。一般来说,任何两个能够分离反应物、产物和过渡态的良好反应坐标的位置相关自由能和扩散系数,通过一个简单的变换相互关联,我们对此进行了演示。通过这个变换,我们得到了具有位置不变 D 的反应坐标。相应的自由能表面使我们能够从展开态的重新配置时间的实验测量中推断出蛋白质折叠的速度限制的假设,并且还揭示了原始自由能投影中隐藏的中间体。最后,我们对未来直接探测 D 的位置依赖性的单分子实验的设计进行了评论。

相似文献

1
Coordinate-dependent diffusion in protein folding.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1088-93. doi: 10.1073/pnas.0910390107. Epub 2009 Dec 28.
2
Estimating free-energy barrier heights for an ultrafast folding protein from calorimetric and kinetic data.
J Phys Chem B. 2008 May 15;112(19):5938-49. doi: 10.1021/jp0757715. Epub 2008 Feb 16.
3
Coordinate and time-dependent diffusion dynamics in protein folding.
Methods. 2010 Sep;52(1):91-8. doi: 10.1016/j.ymeth.2010.04.016. Epub 2010 May 11.
4
Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape.
J Phys Chem B. 2018 Dec 13;122(49):11126-11136. doi: 10.1021/acs.jpcb.8b05842. Epub 2018 Aug 22.
6
Reduction of All-Atom Protein Folding Dynamics to One-Dimensional Diffusion.
J Phys Chem B. 2015 Dec 10;119(49):15247-55. doi: 10.1021/acs.jpcb.5b09741. Epub 2015 Nov 25.
7
Thermodynamics and kinetics of protein folding under confinement.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20233-8. doi: 10.1073/pnas.0807742105. Epub 2008 Dec 10.
8
Diffusion models of protein folding.
Phys Chem Chem Phys. 2011 Oct 14;13(38):16902-11. doi: 10.1039/c1cp21541h. Epub 2011 Aug 15.
9
Native contacts determine protein folding mechanisms in atomistic simulations.
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17874-9. doi: 10.1073/pnas.1311599110. Epub 2013 Oct 15.
10
Probing Position-Dependent Diffusion in Folding Reactions Using Single-Molecule Force Spectroscopy.
Biophys J. 2018 Apr 10;114(7):1657-1666. doi: 10.1016/j.bpj.2018.02.026.

引用本文的文献

2
Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles.
J Chem Theory Comput. 2024 Sep 12;20(18):7775-84. doi: 10.1021/acs.jctc.4c00428.
4
Accurate Memory Kernel Extraction from Discretized Time-Series Data.
J Chem Theory Comput. 2024 Apr 23;20(8):3061-3068. doi: 10.1021/acs.jctc.3c01289. Epub 2024 Apr 11.
5
Fast protein folding is governed by memory-dependent friction.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2220068120. doi: 10.1073/pnas.2220068120. Epub 2023 Jul 25.
6
Anisotropic Friction in a Ligand-Protein Complex.
Nano Lett. 2023 May 24;23(10):4111-4119. doi: 10.1021/acs.nanolett.2c04632. Epub 2023 Mar 22.
7
Graph identification of proteins in tomograms (GRIP-Tomo).
Protein Sci. 2023 Jan;32(1):e4538. doi: 10.1002/pro.4538.
9
Coarse-Grained Simulations of Protein Folding: Bridging Theory and Experiments.
Methods Mol Biol. 2022;2376:303-315. doi: 10.1007/978-1-0716-1716-8_16.
10
Out-of-Equilibrium Biophysical Chemistry: The Case for Multidimensional, Integrated Single-Molecule Approaches.
J Phys Chem B. 2021 Sep 23;125(37):10404-10418. doi: 10.1021/acs.jpcb.1c02424. Epub 2021 Sep 10.

本文引用的文献

1
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
2
Chemical, physical, and theoretical kinetics of an ultrafast folding protein.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18655-62. doi: 10.1073/pnas.0808600105. Epub 2008 Nov 25.
3
Measuring internal friction of an ultrafast-folding protein.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18320-5. doi: 10.1073/pnas.0806154105. Epub 2008 Nov 19.
4
Diffusive reaction dynamics on invariant free energy profiles.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13841-6. doi: 10.1073/pnas.0800228105. Epub 2008 Sep 4.
6
Protein folding kinetics under force from molecular simulation.
J Am Chem Soc. 2008 Mar 26;130(12):3706-7. doi: 10.1021/ja0762691. Epub 2008 Feb 29.
7
Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules.
J Phys Chem B. 2008 May 15;112(19):5968-76. doi: 10.1021/jp075955j. Epub 2008 Feb 6.
8
Universality and diversity of folding mechanics for three-helix bundle proteins.
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):895-900. doi: 10.1073/pnas.0707284105. Epub 2008 Jan 14.
9
Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
J Mol Biol. 2008 Feb 1;375(5):1416-33. doi: 10.1016/j.jmb.2007.11.063. Epub 2007 Nov 28.
10
The ultimate speed limit to protein folding is conformational searching.
J Am Chem Soc. 2007 Oct 3;129(39):11920-7. doi: 10.1021/ja066785b. Epub 2007 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验