Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1088-93. doi: 10.1073/pnas.0910390107. Epub 2009 Dec 28.
Diffusion on a low-dimensional free-energy surface is a remarkably successful model for the folding dynamics of small single-domain proteins. Complicating the interpretation of both simulations and experiments is the expectation that the effective diffusion coefficient D will in general depend on the position along the folding coordinate, and this dependence may vary for different coordinates. Here we explore the position dependence of D, its connection to protein internal friction, and the consequences for the interpretation of single-molecule experiments. We find a large decrease in D from unfolded to folded, for reaction coordinates that directly measure fluctuations in Cartesian configuration space, including those probed in single-molecule experiments. In contrast, D is almost independent of Q, the fraction of native amino acid contacts: Near the folded state, small fluctuations in position cause large fluctuations in Q, and vice versa for the unfolded state. In general, position-dependent free energies and diffusion coefficients for any two good reaction coordinates that separate reactant, product, and transition states, are related by a simple transformation, as we demonstrate. With this transformation, we obtain reaction coordinates with position-invariant D. The corresponding free-energy surfaces allow us to justify the assumptions used in estimating the speed limit for protein folding from experimental measurements of the reconfiguration time in the unfolded state, and also reveal intermediates hidden in the original free-energy projection. Lastly, we comment on the design of future single-molecule experiments that probe the position dependence of D directly.
在低维自由能表面上的扩散是一种非常成功的模型,用于解释小分子单域蛋白质的折叠动力学。模拟和实验的解释都变得复杂,因为人们普遍期望有效扩散系数 D 通常会随折叠坐标的位置而变化,并且这种依赖性可能因不同的坐标而异。在这里,我们探讨了 D 的位置依赖性、它与蛋白质内部摩擦的关系,以及对单分子实验解释的影响。我们发现,对于直接测量笛卡尔构象空间波动的反应坐标,包括在单分子实验中探测到的那些,从展开态到折叠态,D 会大幅下降。相比之下,D 与 Q(天然氨基酸接触的分数)几乎无关:在折叠态附近,位置的小波动会导致 Q 的大波动,而在展开态则相反。一般来说,任何两个能够分离反应物、产物和过渡态的良好反应坐标的位置相关自由能和扩散系数,通过一个简单的变换相互关联,我们对此进行了演示。通过这个变换,我们得到了具有位置不变 D 的反应坐标。相应的自由能表面使我们能够从展开态的重新配置时间的实验测量中推断出蛋白质折叠的速度限制的假设,并且还揭示了原始自由能投影中隐藏的中间体。最后,我们对未来直接探测 D 的位置依赖性的单分子实验的设计进行了评论。