Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1482-7. doi: 10.1073/pnas.0913883107. Epub 2010 Jan 8.
The use of DNA microarrays to identify nucleotide variation is almost 20 years old. A variety of improvements in probe design and experimental conditions have brought this technology to the point that single-nucleotide differences can be efficiently detected in unmixed samples, although developing reliable methods for detection of mixed sequences (e.g., heterozygotes) remains challenging. Surprisingly, a comprehensive study of the probe design parameters and experimental conditions that optimize discrimination of single-nucleotide polymorphisms (SNPs) has yet to be reported, so the limits of this technology remain uncertain. By targeting 24,549 SNPs that differ between two Saccharomyces cerevisiae strains, we studied the effect of SNPs on hybridization efficiency to DNA microarray probes of different lengths under different hybridization conditions. We found that the critical parameter for optimization of sequence discrimination is the relationship between probe melting temperature (T(m)) and the temperature at which the hybridization reaction is performed. This relationship can be exploited through the design of microarrays containing probes of equal T(m) by varying the length of probes. We demonstrate using such a microarray that we detect >90% homozygous SNPs and >80% heterozygous SNPs using the SNPScanner algorithm. The optimized design and experimental parameters determined in this study should guide DNA microarray designs for applications that require sequence discrimination such as mutation detection, genotyping of unmixed and mixed samples, and allele-specific gene expression. Moreover, designing microarray probes with optimized sensitivity to mismatches should increase the accuracy of standard microarray applications such as copy-number variation detection and gene expression analysis.
使用 DNA 微阵列来识别核苷酸变异已经有近 20 年的历史了。探针设计和实验条件的各种改进使得这项技术能够有效地检测未混合样本中的单核苷酸差异,尽管开发可靠的方法来检测混合序列(例如杂合子)仍然具有挑战性。令人惊讶的是,还没有全面研究优化单核苷酸多态性(SNP)区分的探针设计参数和实验条件,因此该技术的局限性仍然不确定。通过针对在两个酿酒酵母菌株之间存在差异的 24549 个 SNP,我们研究了 SNP 对不同长度的 DNA 微阵列探针杂交效率的影响,以及在不同杂交条件下。我们发现,优化序列区分的关键参数是探针解链温度(T(m))与杂交反应进行的温度之间的关系。可以通过设计具有相等 T(m)的探针的微阵列并通过改变探针的长度来利用这种关系。我们使用这样的微阵列证明,我们使用 SNPScanner 算法检测到> 90%的纯合 SNP 和> 80%的杂合 SNP。本研究确定的优化设计和实验参数应指导需要序列区分的 DNA 微阵列设计,例如突变检测、未混合和混合样本的基因分型以及等位基因特异性基因表达。此外,设计对错配具有优化灵敏度的微阵列探针应该提高标准微阵列应用(例如拷贝数变异检测和基因表达分析)的准确性。