Suppr超能文献

疟原虫氯喹耐药转运蛋白 PfCRT 的植物同源物对于谷胱甘肽稳态和应激反应是必需的。

Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses.

机构信息

Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2331-6. doi: 10.1073/pnas.0913689107. Epub 2010 Jan 13.

Abstract

In Arabidopsis thaliana, biosynthesis of the essential thiol antioxidant, glutathione (GSH), is plastid-regulated, but many GSH functions, including heavy metal detoxification and plant defense activation, depend on cytosolic GSH. This finding suggests that plastid and cytosol thiol pools are closely integrated and we show that in Arabidopsis this integration requires a family of three plastid thiol transporters homologous to the Plasmodium falciparum chloroquine-resistance transporter, PfCRT. Arabidopsis mutants lacking these transporters are heavy metal-sensitive, GSH-deficient, and hypersensitive to Phytophthora infection, confirming a direct requirement for correct GSH homeostasis in defense responses. Compartment-specific measurements of the glutathione redox potential using redox-sensitive GFP showed that knockout of the entire transporter family resulted in a more oxidized glutathione redox potential in the cytosol, but not in the plastids, indicating the GSH-deficient phenotype is restricted to the cytosolic compartment. Expression of the transporters in Xenopus oocytes confirmed that each can mediate GSH uptake. We conclude that these transporters play a significant role in regulating GSH levels and the redox potential of the cytosol.

摘要

在拟南芥中,必需的巯基抗氧化剂谷胱甘肽(GSH)的生物合成受质体调控,但 GSH 的许多功能,包括重金属解毒和植物防御激活,都依赖于胞质溶胶中的 GSH。这一发现表明质体和胞质溶胶巯基池紧密结合,我们表明在拟南芥中,这种整合需要一组与疟原虫氯喹抗性转运蛋白 PfCRT 同源的三种质体巯基转运蛋白。缺乏这些转运蛋白的拟南芥突变体对重金属敏感,GSH 缺乏,对 Phytophthora 感染敏感,这证实了正确的 GSH 动态平衡在防御反应中直接需要。使用对氧化还原敏感的 GFP 进行的特定隔室的谷胱甘肽氧化还原电势的测量表明,整个转运蛋白家族的敲除导致胞质溶胶中谷胱甘肽氧化还原电势更加氧化,但在质体中则不然,表明 GSH 缺乏表型仅限于胞质溶胶隔室。在非洲爪蟾卵母细胞中表达转运蛋白证实,每个转运蛋白都可以介导 GSH 的摄取。我们得出结论,这些转运蛋白在调节 GSH 水平和胞质溶胶的氧化还原电势方面发挥着重要作用。

相似文献

1
2
Glutathione transport: a new role for PfCRT in chloroquine resistance.
Antioxid Redox Signal. 2013 Sep 1;19(7):683-95. doi: 10.1089/ars.2012.4625. Epub 2012 Dec 20.
3
Iron is a substrate of the chloroquine resistance transporter PfCRT in oocytes.
J Biol Chem. 2017 Sep 29;292(39):16109-16121. doi: 10.1074/jbc.M117.805200. Epub 2017 Aug 2.
4
Functional Comparison of 45 Naturally Occurring Isoforms of the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT).
Biochemistry. 2015 Aug 18;54(32):5083-94. doi: 10.1021/acs.biochem.5b00412. Epub 2015 Aug 6.
5
Chloroquine transport via the malaria parasite's chloroquine resistance transporter.
Science. 2009 Sep 25;325(5948):1680-2. doi: 10.1126/science.1175667.
6
The natural function of the malaria parasite's chloroquine resistance transporter.
Nat Commun. 2020 Aug 6;11(1):3922. doi: 10.1038/s41467-020-17781-6.
9
Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum.
Mol Biol Evol. 2016 Jun;33(6):1554-70. doi: 10.1093/molbev/msw037. Epub 2016 Feb 22.
10
PfCRT-mediated drug transport in malarial parasites.
Biochemistry. 2011 Jan 18;50(2):163-71. doi: 10.1021/bi101638n. Epub 2010 Dec 22.

引用本文的文献

1
Glutathione accelerates the cell cycle and cellular reprogramming in plant regeneration.
Dev Cell. 2025 Apr 21;60(8):1153-1167.e6. doi: 10.1016/j.devcel.2024.12.019. Epub 2025 Jan 3.
2
Untying the knot: Unraveling genetic mechanisms behind black knot disease resistance in (Japanese plum).
Plant Environ Interact. 2024 Nov 5;5(6):e70016. doi: 10.1002/pei3.70016. eCollection 2024 Dec.
3
Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments.
Microbiol Mol Biol Rev. 2024 Dec 18;88(4):e0019722. doi: 10.1128/mmbr.00197-22. Epub 2024 Oct 10.
4
The Main Functions of Plastids.
Methods Mol Biol. 2024;2776:89-106. doi: 10.1007/978-1-0716-3726-5_5.
5
Development of KASP markers assisted with soybean drought tolerance in the germination stage based on GWAS.
Front Plant Sci. 2024 Feb 15;15:1352379. doi: 10.3389/fpls.2024.1352379. eCollection 2024.
6
The Toxoplasma plant-like vacuolar compartment (PLVAC).
J Eukaryot Microbiol. 2022 Nov;69(6):e12951. doi: 10.1111/jeu.12951. Epub 2022 Oct 27.
7
Transcript profiling of glutathione metabolizing genes reveals abiotic stress and glutathione-specific alteration in and rice.
Physiol Mol Biol Plants. 2022 Jul;28(7):1375-1390. doi: 10.1007/s12298-022-01220-5. Epub 2022 Aug 15.
9
Organelle-specific localization of glutathione in plants grown under different light intensities and spectra.
Histochem Cell Biol. 2022 Sep;158(3):213-227. doi: 10.1007/s00418-022-02103-2. Epub 2022 Apr 29.
10
Live monitoring of plant redox and energy physiology with genetically encoded biosensors.
Plant Physiol. 2021 May 27;186(1):93-109. doi: 10.1093/plphys/kiab019.

本文引用的文献

1
The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9109-14. doi: 10.1073/pnas.0900206106. Epub 2009 May 18.
2
Confocal imaging of glutathione redox potential in living plant cells.
J Microsc. 2008 Aug;231(2):299-316. doi: 10.1111/j.1365-2818.2008.02030.x.
3
Real-time imaging of the intracellular glutathione redox potential.
Nat Methods. 2008 Jun;5(6):553-9. doi: 10.1038/nmeth.1212. Epub 2008 May 11.
4
Coordination of gene expression between organellar and nuclear genomes.
Nat Rev Genet. 2008 May;9(5):383-95. doi: 10.1038/nrg2348.
5
Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development.
Plant J. 2008 Mar;53(6):999-1012. doi: 10.1111/j.1365-313X.2007.03389.x. Epub 2007 Dec 6.
7
Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana.
Plant Cell. 2007 Aug;19(8):2653-61. doi: 10.1105/tpc.107.052597. Epub 2007 Aug 31.
8
EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10270-5. doi: 10.1073/pnas.0702061104. Epub 2007 May 31.
10
Cell signaling. H2O2, a necessary evil for cell signaling.
Science. 2006 Jun 30;312(5782):1882-3. doi: 10.1126/science.1130481.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验