Department of Biology, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22102-7. doi: 10.1073/pnas.0902639106. Epub 2009 Dec 22.
The ability of cells to respond to external mechanical stimulation is a complex and robust process involving a diversity of molecular interactions. Although mechanotransduction has been heavily studied, many questions remain regarding the link between physical stimulation and biochemical response. Of significant interest has been the contribution of the transmembrane proteins involved, and integrins in particular, because of their connectivity to both the extracellular matrix and the cytoskeleton. Here, we demonstrate the existence of a mechanically based initiation molecule, syndecan-4. We first demonstrate the ability of syndecan-4 molecules to support cell attachment and spreading without the direct extracellular binding of integrins. We also examine the distribution of focal adhesion-associated proteins through controlling surface interactions of beads with molecular specificity in binding to living cells. Furthermore, after adhering cells to elastomeric membranes via syndecan-4-specific attachments we mechanically strained the cells via our mechanical stimulation and polymer surface chemical modification approach. We found ERK phosphorylation similar to that shown for mechanotransductive response for integrin-based cell attachments through our elastomeric membrane-based approach and optical magnetic twisting cytometry for syndecan-4. Finally, through the use of cytoskeletal disruption agents, this mechanical signaling was shown to be actin cytoskeleton dependent. We believe that these results will be of interest to a wide range of fields, including mechanotransduction, syndecan biology, and cell-material interactions.
细胞对外界机械刺激做出反应的能力是一个复杂而稳健的过程,涉及多种分子相互作用。尽管已经对力学转导进行了深入研究,但关于物理刺激与生化反应之间的联系仍有许多问题尚未解决。其中一个非常有趣的问题是涉及到的跨膜蛋白的作用,特别是整合素,因为它们与细胞外基质和细胞骨架都有连接。在这里,我们证明了一种基于力学的起始分子—— syndecan-4 的存在。我们首先证明了 syndecan-4 分子能够支持细胞附着和扩展,而不需要整合素的直接细胞外结合。我们还通过控制与活细胞结合的珠粒的表面相互作用,检查了粘着斑相关蛋白的分布,这些相互作用具有分子特异性。此外,通过 syndecan-4 特异性附着将细胞附着到弹性膜上后,我们通过我们的机械刺激和聚合物表面化学修饰方法对细胞进行机械拉伸。我们发现 ERK 磷酸化与基于整合素的细胞附着的力学转导反应相似,这是通过我们的基于弹性膜的方法和光学磁扭细胞术检测到的。最后,通过使用细胞骨架破坏剂,证明这种机械信号是依赖于肌动蛋白细胞骨架的。我们相信这些结果将引起广泛的关注,包括力学转导、 syndecan 生物学和细胞-材料相互作用等领域。