Mannix Robert J, Kumar Sanjay, Cassiola Flávia, Montoya-Zavala Martín, Feinstein Efraim, Prentiss Mara, Ingber Donald E
Nat Nanotechnol. 2008 Jan;3(1):36-40. doi: 10.1038/nnano.2007.418. Epub 2007 Dec 23.
Complex cell behaviours are triggered by chemical ligands that bind to membrane receptors and alter intracellular signal transduction. However, future biosensors, medical devices and other microtechnologies that incorporate living cells as system components will require actuation mechanisms that are much more rapid, robust, non-invasive and easily integrated with solid-state interfaces. Here we describe a magnetic nanotechnology that activates a biochemical signalling mechanism normally switched on by binding of multivalent chemical ligands. Superparamagnetic 30-nm beads, coated with monovalent ligands and bound to transmembrane receptors, magnetize when exposed to magnetic fields, and aggregate owing to bead-bead attraction in the plane of the membrane. Associated clustering of the bound receptors acts as a nanomagnetic cellular switch that directly transduces magnetic inputs into physiological cellular outputs, with rapid system responsiveness and non-invasive dynamic control. This technique may represent a new actuator mechanism for cell-based microtechnologies and man-machine interfaces.
复杂的细胞行为是由与膜受体结合并改变细胞内信号转导的化学配体触发的。然而,未来将活细胞作为系统组件纳入的生物传感器、医疗设备和其他微技术将需要更快速、强大、非侵入性且易于与固态界面集成的驱动机制。在此,我们描述了一种磁性纳米技术,它可激活通常通过多价化学配体结合而开启的生化信号传导机制。涂有单价配体并与跨膜受体结合的超顺磁性30纳米珠子,在暴露于磁场时会磁化,并由于膜平面内珠子与珠子之间的吸引力而聚集。结合受体的相关聚集充当纳米磁性细胞开关,可将磁输入直接转化为生理细胞输出,具有快速的系统响应能力和非侵入性动态控制。这项技术可能代表了一种用于基于细胞的微技术和人机界面的新型驱动机制。