Suppr超能文献

临床试验中累积的随机建模与预测。

Stochastic modeling and prediction for accrual in clinical trials.

机构信息

Pfizer Inc., New York, NY 10017, USA.

出版信息

Stat Med. 2010 Mar 15;29(6):649-58. doi: 10.1002/sim.3847.

Abstract

Patient accrual in clinical trials is a topic of interest for important practical reasons. It has implications in both the initial planning and ongoing monitoring of trials. Slow accrual is of particular concern when it leads to reduced sample size. Although accrual in clinical trials has been studied and its estimation has been proposed and implemented, the existing methods are usually over-simplified by assuming a constant or piecewise constant accrual rate, and more flexible and realistic methods are needed. In this paper, we discuss a principled framework to monitor and predict trial accrual. We model trial accrual using a non-homogeneous Poisson process and model the underlying time-dependent accrual rate using cubic B-splines. The statistical inference and prediction procedure for the model are studied in a Bayesian paradigm. We conduct simulation studies to investigate the performance of the proposed approach and compare with a constant accrual rate model discussed by Gajewski et al. (Statist. Med. 2008; 27: 2328-2340). With satisfactory results, we illustrate the proposed method using accrual data from a real oncology trial. Our results show that the proposed model is more robust and achieves substantially better performance compared with the existing methods.

摘要

患者入组是临床试验中一个重要的关注点,原因有很多。它对试验的初始规划和持续监测都有影响。当患者入组缓慢导致样本量减少时,尤其需要关注。尽管已经对临床试验中的患者入组情况进行了研究,并提出和实施了相关的估计方法,但现有的方法通常过于简化,假设入组率是恒定的或分段恒定的,因此需要更灵活和现实的方法。本文讨论了一种用于监测和预测试验入组情况的原则性框架。我们使用非齐次泊松过程来模拟试验入组情况,并使用三次 B 样条来模拟潜在的时变入组率。我们在贝叶斯框架下研究了模型的统计推断和预测程序。我们进行了模拟研究,以评估所提出方法的性能,并与 Gajewski 等人讨论的恒定入组率模型进行比较(Statist. Med. 2008; 27: 2328-2340)。结果令人满意,我们使用来自真实肿瘤学试验的入组数据说明了所提出的方法。我们的结果表明,与现有的方法相比,所提出的模型更稳健,性能也有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验