Suppr超能文献

临床试验中应计时间和事件时间的联合监测与预测。

Joint monitoring and prediction of accrual and event times in clinical trials.

作者信息

Zhang Xiaoxi, Long Qi

机构信息

Pfizer Inc., New York, NY 10017, USA.

出版信息

Biom J. 2012 Nov;54(6):735-49. doi: 10.1002/bimj.201100180. Epub 2012 Aug 21.

Abstract

In many clinical trials, the primary endpoint is time to an event of interest, for example, time to cardiac attack or tumor progression, and the statistical power of these trials is primarily driven by the number of events observed during the trials. In such trials, the number of events observed is impacted not only by the number of subjects enrolled but also by other factors including the event rate and the follow-up duration. Consequently, it is important for investigators to be able to monitor and predict accurately patient accrual and event times so as to predict the times of interim and final analyses and enable efficient allocation of research resources, which have long been recognized as important aspects of trial design and conduct. The existing methods for prediction of event times all assume that patient accrual follows a Poisson process with a constant Poisson rate over time; however, it is fairly common in real-life clinical trials that the Poisson rate changes over time. In this paper, we propose a Bayesian joint modeling approach for monitoring and prediction of accrual and event times in clinical trials. We employ a nonhomogeneous Poisson process to model patient accrual and a parametric or nonparametric model for the event and loss to follow-up processes. Compared to existing methods, our proposed methods are more flexible and robust in that we model accrual and event/loss-to-follow-up times jointly and allow the underlying accrual rates to change over time. We evaluate the performance of the proposed methods through simulation studies and illustrate the methods using data from a real oncology trial.

摘要

在许多临床试验中,主要终点是达到感兴趣事件的时间,例如,心脏病发作或肿瘤进展的时间,而这些试验的统计功效主要由试验期间观察到的事件数量驱动。在此类试验中,观察到的事件数量不仅受到入组受试者数量的影响,还受到其他因素的影响,包括事件发生率和随访持续时间。因此,对于研究人员来说,能够准确监测和预测患者入组情况和事件发生时间,以便预测中期和最终分析的时间,并实现研究资源的有效分配,这一点很重要,而这些长期以来一直被视为试验设计和实施的重要方面。现有的事件时间预测方法都假定患者入组遵循泊松过程,且泊松率随时间恒定;然而,在现实生活中的临床试验中,泊松率随时间变化是相当常见的。在本文中,我们提出了一种贝叶斯联合建模方法,用于监测和预测临床试验中的入组情况和事件发生时间。我们采用非齐次泊松过程对患者入组进行建模,并对事件和失访过程采用参数或非参数模型。与现有方法相比,我们提出的方法更加灵活和稳健,因为我们对入组情况和事件/失访时间进行联合建模,并允许潜在的入组率随时间变化。我们通过模拟研究评估了所提出方法的性能,并使用来自一项真实肿瘤学试验的数据对这些方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验