Donovan J Mark, Elliott Michael R, Heitjan Daniel F
Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Pennington, NJ 08534, USA.
Clin Trials. 2007;4(5):481-90. doi: 10.1177/1740774507083390.
Timing for interim or final analysis of data in an event-based trial is often determined by the accrual of events during the study. Existing Bayesian methods may be used to predict the date of the landmark event using observed enrollment, event, and loss times when treatment arm information is masked.
For event-based trials with a blocked randomization, knowledge of blocks in which patients are enrolled can provide additional information to improve predictions versus models that only assume a known treatment allocation proportion. We therefore propose to incorporate blocking information into existing methods for prediction.
We derive a latent variable (LV) extension of a mixture model used in Donovan JM, Elliott MR, Heitjan DF. Predicting Event Times in Clinical Trials When Treatment Arm is Masked. J Biopharmaceut Stat 2006; 16:343-56 to incorporate block randomization (constrained LV) for predicting the landmark event and compare this model with (a) methods where blocking information is ignored (unconstrained LV), and (b) methods assuming a single population (SP).
Comparison of the constrained and unconstrained LV models in our application shows that the constrained LV model has narrower prediction intervals. Simulation studies show that the constrained LV model can have better coverage probabilities for the prediction intervals than SP models if a treatment effect is present, and prediction intervals from the constrained LV model are narrower than those for the unconstrained LV model. These differences varied by block size and prediction time.
We have limited focus to the exponential model for events. Coverage for the LV models may be somewhat reduced if no treatment effect is present.
Extra information provided by knowledge of blocking can be used to decrease prediction interval width versus the unconstrained LV model, while providing better coverage properties than the SP model if a treatment effect is present.
在基于事件的试验中,数据的中期或最终分析时间通常由研究期间事件的累积情况决定。当治疗组信息被掩盖时,现有的贝叶斯方法可用于利用观察到的入组、事件和失访时间来预测标志性事件的日期。
对于采用区组随机化的基于事件的试验,了解患者入组的区组可提供额外信息,相较于仅假设已知治疗分配比例的模型,有助于改进预测。因此,我们建议将区组信息纳入现有的预测方法。
我们推导了Donovan JM、Elliott MR、Heitjan DF在《J Biopharmaceut Stat 2006; 16:343 - 56》中使用的混合模型的潜变量(LV)扩展,以纳入区组随机化(约束LV)来预测标志性事件,并将该模型与(a)忽略区组信息的方法(无约束LV)以及(b)假设单一总体(SP)的方法进行比较。
在我们的应用中,约束LV模型和无约束LV模型的比较表明,约束LV模型的预测区间更窄。模拟研究表明,如果存在治疗效果,约束LV模型的预测区间覆盖概率比SP模型更好,且约束LV模型的预测区间比无约束LV模型更窄。这些差异因区组大小和预测时间而异。
我们仅关注事件的指数模型。如果不存在治疗效果,LV模型的覆盖范围可能会有所降低。
与无约束LV模型相比,区组知识提供的额外信息可用于减小预测区间宽度,并且如果存在治疗效果,相较于SP模型,能提供更好的覆盖特性。