Suppr超能文献

数据挖掘方法评估皮肤表面电势在乳腺癌检测中的应用。

Data mining approach to evaluating the use of skin surface electropotentials for breast cancer detection.

机构信息

School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.

出版信息

Technol Cancer Res Treat. 2010 Feb;9(1):95-106. doi: 10.1177/153303461000900111.

Abstract

The Biofield Diagnostic System (BDS) uses a score formed with measured skin surface electropotentials and a prior Level Of Suspicion (LOS) value (predicted by the physician based on the patient's ultrasound or mammography results) to calculate a revised Post-BDS LOS to indicate the presence of breast cancer. The demographic details, BDS test results, and the recorded electropotential values form a potentially useful dataset, which can be further explored with data mining tools to extract important information that can be used to improve the current predictive accuracy of the device. According to the proposed data mining framework, the BDS dataset with 291 cases was first pre-processed to remove outliers and then used to select relevant and informative features for classifier development and finally to evaluate the capability of the built classifiers in detecting the presence of the disease. Two popular feature selection techniques, namely, the filter and wrapper methods, were used in parallel for feature selection. A few statistical inference based classifiers and neural networks were used for classification. The proposed technique significantly improved the BDS prediction accuracy. Also, the use of prior LOS and, hence, the Post-BDS LOS, associates a mild subjective interpretation to the current prediction methodology used by BDS. However, the feature subset selected in our analysis that gave the best accuracy did not use either of these features. This result indicates the possibility of using BDS as a better objective assessment tool for breast cancer detection.

摘要

生物场诊断系统 (BDS) 使用由测量的皮肤表面电势形成的分数和先前的可疑程度 (LOS) 值 (由医生根据患者的超声或乳房 X 光检查结果预测) 来计算经 BDS 修正后的 LOS,以指示乳腺癌的存在。人口统计细节、BDS 测试结果和记录的电势值形成了一个潜在有用的数据集,可以使用数据挖掘工具进一步探索该数据集,以提取可以用于提高设备当前预测准确性的重要信息。根据拟议的数据挖掘框架,首先对具有 291 个案例的 BDS 数据集进行预处理以去除异常值,然后用于为分类器开发选择相关且有用的特征,最后评估所构建的分类器在检测疾病存在方面的能力。并行使用了两种流行的特征选择技术,即过滤和包装器方法,用于特征选择。使用了一些基于统计推断的分类器和神经网络进行分类。所提出的技术显著提高了 BDS 的预测准确性。此外,使用先前的 LOS,从而对 BDS 当前使用的预测方法进行轻度主观解释。然而,我们的分析中选择的最佳准确性的特征子集并未使用这两个特征之一。这一结果表明,BDS 有可能作为一种更好的乳腺癌检测客观评估工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验