Suppr超能文献

基于临床研究结果和分类器评估生物场诊断系统在乳腺癌检测中的效率。

Evaluation of the efficiency of biofield diagnostic system in breast cancer detection using clinical study results and classifiers.

机构信息

School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.

出版信息

J Med Syst. 2012 Feb;36(1):15-24. doi: 10.1007/s10916-010-9441-z. Epub 2010 Feb 23.

Abstract

The division of breast cancer cells results in regions of electrical depolarisation within the breast. These regions extend to the skin surface from where diagnostic information can be obtained through measurements of the skin surface electropotentials using sensors. This technique is used by the Biofield Diagnostic System (BDS) to detect the presence of malignancy. This paper evaluates the efficiency of BDS in breast cancer detection and also evaluates the use of classifiers for improving the accuracy of BDS. 182 women scheduled for either mammography or ultrasound or both tests participated in the BDS clinical study conducted at Tan Tock Seng hospital, Singapore. Using the BDS index obtained from the BDS examination and the level of suspicion score obtained from mammography/ultrasound results, the final BDS result was deciphered. BDS demonstrated high values for sensitivity (96.23%), specificity (93.80%), and accuracy (94.51%). Also, we have studied the performance of five supervised learning based classifiers (back propagation network, probabilistic neural network, linear discriminant analysis, support vector machines, and a fuzzy classifier), by feeding selected features from the collected dataset. The clinical study results show that BDS can help physicians to differentiate benign and malignant breast lesions, and thereby, aid in making better biopsy recommendations.

摘要

乳腺癌细胞的分裂会导致乳房内出现电去极化区域。这些区域延伸到皮肤表面,通过使用传感器测量皮肤表面电势,可以从这些区域获得诊断信息。生物场诊断系统 (BDS) 就是利用这一技术来检测恶性肿瘤的存在。本文评估了 BDS 在乳腺癌检测中的效率,并评估了分类器在提高 BDS 准确性方面的应用。182 名女性接受了新加坡 Tan Tock Seng 医院的 BDS 临床研究,她们要么接受乳房 X 光摄影术或超声检查,要么同时接受这两项检查。使用 BDS 检查获得的 BDS 指数和乳房 X 光摄影术/超声检查结果获得的可疑程度评分,来解读最终的 BDS 结果。BDS 的灵敏度(96.23%)、特异性(93.80%)和准确性(94.51%)都很高。此外,我们还通过从收集的数据集中选择特征,研究了五种基于监督学习的分类器(反向传播网络、概率神经网络、线性判别分析、支持向量机和模糊分类器)的性能。临床研究结果表明,BDS 可以帮助医生区分良性和恶性乳腺病变,从而有助于做出更好的活检建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验