School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
J Med Syst. 2012 Feb;36(1):15-24. doi: 10.1007/s10916-010-9441-z. Epub 2010 Feb 23.
The division of breast cancer cells results in regions of electrical depolarisation within the breast. These regions extend to the skin surface from where diagnostic information can be obtained through measurements of the skin surface electropotentials using sensors. This technique is used by the Biofield Diagnostic System (BDS) to detect the presence of malignancy. This paper evaluates the efficiency of BDS in breast cancer detection and also evaluates the use of classifiers for improving the accuracy of BDS. 182 women scheduled for either mammography or ultrasound or both tests participated in the BDS clinical study conducted at Tan Tock Seng hospital, Singapore. Using the BDS index obtained from the BDS examination and the level of suspicion score obtained from mammography/ultrasound results, the final BDS result was deciphered. BDS demonstrated high values for sensitivity (96.23%), specificity (93.80%), and accuracy (94.51%). Also, we have studied the performance of five supervised learning based classifiers (back propagation network, probabilistic neural network, linear discriminant analysis, support vector machines, and a fuzzy classifier), by feeding selected features from the collected dataset. The clinical study results show that BDS can help physicians to differentiate benign and malignant breast lesions, and thereby, aid in making better biopsy recommendations.
乳腺癌细胞的分裂会导致乳房内出现电去极化区域。这些区域延伸到皮肤表面,通过使用传感器测量皮肤表面电势,可以从这些区域获得诊断信息。生物场诊断系统 (BDS) 就是利用这一技术来检测恶性肿瘤的存在。本文评估了 BDS 在乳腺癌检测中的效率,并评估了分类器在提高 BDS 准确性方面的应用。182 名女性接受了新加坡 Tan Tock Seng 医院的 BDS 临床研究,她们要么接受乳房 X 光摄影术或超声检查,要么同时接受这两项检查。使用 BDS 检查获得的 BDS 指数和乳房 X 光摄影术/超声检查结果获得的可疑程度评分,来解读最终的 BDS 结果。BDS 的灵敏度(96.23%)、特异性(93.80%)和准确性(94.51%)都很高。此外,我们还通过从收集的数据集中选择特征,研究了五种基于监督学习的分类器(反向传播网络、概率神经网络、线性判别分析、支持向量机和模糊分类器)的性能。临床研究结果表明,BDS 可以帮助医生区分良性和恶性乳腺病变,从而有助于做出更好的活检建议。