Suppr超能文献

C-2 位萨尔瓦林 A 类似物在 κ 阿片受体上的 CoMFA 分析提供了对差向异构体选择性的深入了解。

CoMFA analyses of C-2 position salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity.

机构信息

Department of Medicinal Chemistry, P.O. Box 980540, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA.

出版信息

J Mol Graph Model. 2010 Apr;28(7):612-25. doi: 10.1016/j.jmgm.2009.12.008. Epub 2010 Jan 4.

Abstract

The highly potent and kappa-opioid (KOP) receptor-selective hallucinogen Salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOP receptor and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of Salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [(3)H]diprenorphine or [(125)I]6 beta-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([(125)I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [(125)I]IOXY set (Model 1) and [(3)H]diprenorphine set (Model 2) gave q(2) values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r(2)=0.833; Model 2 PSET r(2)=0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing Salvinorin A analogs that provides a rationale for the observation that the beta-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding alpha-epimers (S-configuration).

摘要

高活性和 κ 阿片受体(KOP)选择性致幻剂 Salvinorin A 及其选定的类似物已使用 3D 定量构效关系技术比较分子场分析(CoMFA)进行分析,旨在得出 KOP 受体上 Salvinorin 亲和力的统计学上显著和可预测的模型,并为先前提出的基于结构的相互作用模型的有效性提供额外的统计支持。呈现了两种取代 C-2 位置的 Salvinorin A 类似物的 CoMFA 模型。分别基于在 κ 阿片受体结合测定中使用的放射性配体开发了单独的模型,即[(3)H]二苯并庚烷或[(125)I]6β-碘-3,14-二羟基-17-环丙基甲基-4,5α-环氧吗啡烷([(125)I]IOXY)。对于每个数据集,使用了三种对齐方法:一种是来自基于结构的对接算法 GOLD 的受体对接对齐,另一种是来自基于配体的对齐算法 FlexS 的对齐,以及一种来自受体对接对齐的刚性重新对齐。在两个数据集的受体对接对齐产生了比 FlexS 对齐或重新对齐更优越的统计学结果。[(125)I]IOXY 集(模型 1)和[(3)H]二苯并庚烷集(模型 2)在使用受体对接对齐时分别给出了 q(2)值 0.592 和 0.620,两个模型都产生了相似的 CoMFA 等高线图,反映了它们从中衍生出的受体模型的立体电子特征。每个模型都给出了显著的可预测 CoMFA 统计数据(模型 1 PSET r(2)=0.833;模型 2 PSET r(2)=0.813)。基于 CoMFA 等高线图,提出了含胺 Salvinorin A 类似物的结合模式,为观察到 C-2 位置质子化胺的β-差向异构体(R-构型)比相应的α-差向异构体(S-构型)具有更高的亲和力提供了合理的解释。

相似文献

6
O6C-20-nor-salvinorin A is a stable and potent KOR agonist.O6C - 20 - 去甲 - 萨尔文诺林A是一种稳定且强效的κ阿片受体激动剂。
Bioorg Med Chem Lett. 2018 Sep 1;28(16):2770-2772. doi: 10.1016/j.bmcl.2018.01.055. Epub 2018 Jan 31.
7
A review of salvinorin analogs and their kappa-opioid receptor activity.萨尔维诺林类似物及其κ-阿片受体活性综述。
Bioorg Med Chem Lett. 2018 May 15;28(9):1436-1445. doi: 10.1016/j.bmcl.2018.03.029. Epub 2018 Mar 12.
10
Kappa-opioid receptor-selective dicarboxylic ester-derived salvinorin A ligands.κ-阿片受体选择性二羧酸酯衍生萨维林 A 配体。
Bioorg Med Chem Lett. 2013 May 15;23(10):2860-2. doi: 10.1016/j.bmcl.2013.03.111. Epub 2013 Apr 4.

引用本文的文献

本文引用的文献

4
Ligand binding and micro-switches in 7TM receptor structures.7TM受体结构中的配体结合与微开关
Trends Pharmacol Sci. 2009 May;30(5):249-59. doi: 10.1016/j.tips.2009.02.006. Epub 2009 Apr 16.
7
A ligand's-eye view of protein binding.从配体角度看蛋白质结合。
J Comput Aided Mol Des. 2008 Jun-Jul;22(6-7):507-21. doi: 10.1007/s10822-008-9177-8. Epub 2008 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验