Suppr超能文献

混合效应线性回归模型中检测两个二元固定效应之间相互作用所需的样本量。

Sample Sizes Required to Detect Interactions between Two Binary Fixed-Effects in a Mixed-Effects Linear Regression Model.

作者信息

Leon Andrew C, Heo Moonseong

机构信息

Department of Psychiatry, Weill Medical College of Cornell University.

出版信息

Comput Stat Data Anal. 2009 Jan 15;53(3):603-608. doi: 10.1016/j.csda.2008.06.010.

Abstract

Mixed-effects linear regression models have become more widely used for analysis of repeatedly measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating sample sizes required to detect the main effects of treatment and the treatment by time interactions for those models. A formula is proposed to estimate the sample size required to detect an interaction between two binary variables in a factorial design with repeated measures of a continuous outcome. The formula is based, in part, on the fact that the variance of an interaction is fourfold that of the main effect. A simulation study examines the statistical power associated with the resulting sample sizes in a mixed-effects linear regression model with a random intercept. The simulation varies the magnitude (Δ) of the standardized main effects and interactions, the intraclass correlation coefficient (ρ ), and the number (k) of repeated measures within-subject. The results of the simulation study verify that the sample size required to detect a 2 × 2 interaction in a mixed-effects linear regression model is fourfold that to detect a main effect of the same magnitude.

摘要

在过去十年中,混合效应线性回归模型在临床试验中对重复测量结果的分析中得到了更广泛的应用。对于那些模型,有用于估计检测治疗主要效应和治疗与时间交互作用所需样本量的公式和表格。本文提出了一个公式,用于估计在具有连续结果重复测量的析因设计中检测两个二元变量之间交互作用所需的样本量。该公式部分基于交互作用的方差是主要效应方差的四倍这一事实。一项模拟研究考察了在具有随机截距的混合效应线性回归模型中,与所得样本量相关的统计功效。模拟改变了标准化主要效应和交互作用的大小(Δ)、组内相关系数(ρ)以及受试者内重复测量的次数(k)。模拟研究结果证实,在混合效应线性回归模型中检测2×2交互作用所需的样本量是检测相同大小主要效应所需样本量的四倍。

相似文献

1
Sample Sizes Required to Detect Interactions between Two Binary Fixed-Effects in a Mixed-Effects Linear Regression Model.
Comput Stat Data Anal. 2009 Jan 15;53(3):603-608. doi: 10.1016/j.csda.2008.06.010.
10
Evaluation of a flexible piecewise linear mixed-effects model in the analysis of randomized cross-over trials.
Pharm Stat. 2024 May-Jun;23(3):370-384. doi: 10.1002/pst.2357. Epub 2023 Dec 25.

引用本文的文献

1
Tackle characteristics associated with concussion in elite men's rugby union: unpicking the differences between tacklers and ball-carriers.
BMJ Open Sport Exerc Med. 2025 Aug 4;11(3):e002612. doi: 10.1136/bmjsem-2025-002612. eCollection 2025.
2
Multiple imputation for systematically missing effect modifiers in individual participant data meta-analysis.
Stat Methods Med Res. 2025 Aug;34(8):1590-1604. doi: 10.1177/09622802251348800. Epub 2025 Jun 20.
3
Range-Wide Assessment of the Tasmanian Devil Gut Microbiome.
Ecol Evol. 2025 May 4;15(5):e71196. doi: 10.1002/ece3.71196. eCollection 2025 May.
6
Awake Prone Positioning in Adults With COVID-19: An Individual Participant Data Meta-Analysis.
JAMA Intern Med. 2025 May 1;185(5):572-581. doi: 10.1001/jamainternmed.2025.0011.
9
How Gender Shapes Sibling Tension in Adulthood Following Parental Death.
J Marriage Fam. 2024 Jun;86(3):677-697. doi: 10.1111/jomf.12951. Epub 2023 Dec 1.

本文引用的文献

2
Mediators and moderators of treatment effects in randomized clinical trials.
Arch Gen Psychiatry. 2002 Oct;59(10):877-83. doi: 10.1001/archpsyc.59.10.877.
4
Estimating sample sizes for repeated measurement designs.
Control Clin Trials. 1994 Apr;15(2):100-23. doi: 10.1016/0197-2456(94)90015-9.
5
Randomization by cluster. Sample size requirements and analysis.
Am J Epidemiol. 1981 Dec;114(6):906-14. doi: 10.1093/oxfordjournals.aje.a113261.
6
Random-effects models for longitudinal data.
Biometrics. 1982 Dec;38(4):963-74.
7
Sample size formulae for intervention studies with the cluster as unit of randomization.
Stat Med. 1988 Nov;7(11):1195-201. doi: 10.1002/sim.4780071113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验