Suppr超能文献

基于潜在脑码的具体名词表示的神经语义理论。

A neurosemantic theory of concrete noun representation based on the underlying brain codes.

机构信息

Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

PLoS One. 2010 Jan 13;5(1):e8622. doi: 10.1371/journal.pone.0008622.

Abstract

This article describes the discovery of a set of biologically-driven semantic dimensions underlying the neural representation of concrete nouns, and then demonstrates how a resulting theory of noun representation can be used to identify simple thoughts through their fMRI patterns. We use factor analysis of fMRI brain imaging data to reveal the biological representation of individual concrete nouns like apple, in the absence of any pictorial stimuli. From this analysis emerge three main semantic factors underpinning the neural representation of nouns naming physical objects, which we label manipulation, shelter, and eating. Each factor is neurally represented in 3-4 different brain locations that correspond to a cortical network that co-activates in non-linguistic tasks, such as tool use pantomime for the manipulation factor. Several converging methods, such as the use of behavioral ratings of word meaning and text corpus characteristics, provide independent evidence of the centrality of these factors to the representations. The factors are then used with machine learning classifier techniques to show that the fMRI-measured brain representation of an individual concrete noun like apple can be identified with good accuracy from among 60 candidate words, using only the fMRI activity in the 16 locations associated with these factors. To further demonstrate the generativity of the proposed account, a theory-based model is developed to predict the brain activation patterns for words to which the algorithm has not been previously exposed. The methods, findings, and theory constitute a new approach of using brain activity for understanding how object concepts are represented in the mind.

摘要

本文描述了在具体名词的神经表示下发现的一组受生物学驱动的语义维度,然后展示了如何使用由此产生的名词表示理论通过 fMRI 模式来识别简单的想法。我们使用 fMRI 脑成像数据的因子分析来揭示像苹果这样的单个具体名词的生物表示,而无需任何图像刺激。从这个分析中出现了三个主要的语义因素,为物体名词的神经表示提供了基础,我们将其标记为操作、遮蔽和食用。每个因素在 3-4 个不同的大脑位置上得到神经表示,这些位置对应于皮质网络,在非语言任务中会共同激活,例如工具使用的模拟操作因素。几种方法的融合,如使用词汇意义的行为评分和文本语料库特征,提供了这些因素对表示的中心性的独立证据。然后使用机器学习分类器技术,使用仅与这些因素相关的 16 个位置的 fMRI 活动,从 60 个候选词中以较高的准确性识别出单个具体名词(如苹果)的 fMRI 测量的大脑表示。为了进一步证明所提出的解释的生成能力,开发了一个基于理论的模型来预测算法以前未接触过的单词的大脑激活模式。该方法、发现和理论构成了一种使用大脑活动来理解对象概念在头脑中是如何表示的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3df2/2797630/8b2f0afe4d11/pone.0008622.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验