Suppr超能文献

MRQAP 检验对共线性和自相关条件的敏感性。

Sensitivity of MRQAP Tests to Collinearity and Autocorrelation Conditions.

作者信息

Dekker David, Krackhardt David, Snijders Tom A B

出版信息

Psychometrika. 2007 Dec;72(4):563-581. doi: 10.1007/s11336-007-9016-1. Epub 2007 Aug 7.

Abstract

Multiple regression quadratic assignment procedures (MRQAP) tests are permutation tests for multiple linear regression model coefficients for data organized in square matrices of relatedness among n objects. Such a data structure is typical in social network studies, where variables indicate some type of relation between a given set of actors. We present a new permutation method (called "double semi-partialing", or DSP) that complements the family of extant approaches to MRQAP tests. We assess the statistical bias (type I error rate) and statistical power of the set of five methods, including DSP, across a variety of conditions of network autocorrelation, of spuriousness (size of confounder effect), and of skewness in the data. These conditions are explored across three assumed data distributions: normal, gamma, and negative binomial. We find that the Freedman-Lane method and the DSP method are the most robust against a wide array of these conditions. We also find that all five methods perform better if the test statistic is pivotal. Finally, we find limitations of usefulness for MRQAP tests: All tests degrade under simultaneous conditions of extreme skewness and high spuriousness for gamma and negative binomial distributions.

摘要

多元回归二次指派程序(MRQAP)检验是针对n个对象之间相关性的方阵形式组织的数据的多元线性回归模型系数的排列检验。这种数据结构在社会网络研究中很典型,其中变量表示给定一组参与者之间的某种关系类型。我们提出了一种新的排列方法(称为“双重半偏相关法”,即DSP),它补充了现有的MRQAP检验方法系列。我们在网络自相关、虚假性(混杂效应大小)和数据偏度的各种条件下,评估了包括DSP在内的五种方法的统计偏差(I型错误率)和统计功效。这些条件在三种假定的数据分布中进行了探索:正态分布、伽马分布和负二项分布。我们发现,弗里德曼-莱恩方法和DSP方法在这些条件中的多种情况下最为稳健。我们还发现,如果检验统计量是枢轴量,所有五种方法的表现都会更好。最后,我们发现了MRQAP检验的实用性局限性:对于伽马分布和负二项分布,在极端偏度和高虚假性的同时条件下,所有检验的效果都会变差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da9/2798974/8b83d2705ada/11336_2007_Article_9016_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验