Suppr超能文献

互补者与竞争者:在协作编码平台上考察技术共同扩散及相关性

Complements and competitors: Examining technological co-diffusion and relatedness on a collaborative coding platform.

作者信息

Sirianni Antonio D, Morgan Jonathan H, Zöller Nikolas, Rogers Kimberly B, Schröder Tobias

机构信息

Department of Sociology, Dartmouth College, 20 N Main St, Hanover, NH 03755, USA.

McCourt School of Public Policy, Georgetown University, 125 E St NW, Washington, DC 20001, USA.

出版信息

PNAS Nexus. 2024 Dec 10;3(12):pgae549. doi: 10.1093/pnasnexus/pgae549. eCollection 2024 Dec.

Abstract

Diffusive and contagious processes spread in the context of one another in connected populations. Diffusions may be more likely to pass through portions of a network where compatible diffusions are already present. We examine this by incorporating the concept of "relatedness" from the economic complexity literature into a network co-diffusion model. Building on the "product space" concept used in this work, we consider technologies themselves as nodes in "product networks," where edges define relationships between products. Specifically, coding languages on GitHub, an online platform for collaborative coding, are considered. From rates of language co-occurrence in coding projects, we calculate rates of functional cohesion and functional equivalence for each pair of languages. From rates of how individuals adopt and abandon coding languages over time, we calculate measures of complementary diffusion and substitutive diffusion for each pair of languages relative to one another. Consistent with the principle of relatedness, network regression techniques (MR-QAP) reveal strong evidence that functional cohesion positively predicts complementary diffusion. We also find limited evidence that functional equivalence predicts substitutive (competitive) diffusion. Results support the broader finding that functional dependencies between diffusive processes will dictate how said processes spread relative to one another across a population of potential adopters.

摘要

扩散和传染过程在相互关联的人群中相互交织地传播。扩散可能更倾向于通过网络中已经存在兼容扩散的部分。我们通过将经济复杂性文献中的“关联性”概念纳入网络共同扩散模型来对此进行研究。基于本研究中使用的“产品空间”概念,我们将技术本身视为“产品网络”中的节点,其中边定义了产品之间的关系。具体而言,我们考虑了在线协作编码平台GitHub上的编程语言。从编码项目中语言的共现率,我们计算每对语言的功能内聚率和功能等价率。从个体随时间采用和放弃编程语言的速率,我们计算每对语言相对于彼此的互补扩散和替代扩散度量。与关联性原则一致,网络回归技术(MR-QAP)有力地证明了功能内聚正向预测互补扩散。我们还发现有限的证据表明功能等价预测替代(竞争)扩散。结果支持了更广泛的发现,即扩散过程之间的功能依赖性将决定这些过程如何在潜在采用者群体中相对于彼此传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c01/11646702/339d7db3d825/pgae549f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验