Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA; School of Statistics, University of Minnesota, Minneapolis, MN, 55455, USA.
Neuroimage. 2019 Nov 1;201:116030. doi: 10.1016/j.neuroimage.2019.116030. Epub 2019 Jul 19.
Statistical inference in neuroimaging research often involves testing the significance of regression coefficients in a general linear model. In many applications, the researcher assumes a model of the form Y=α+Xβ+Zγ+ε, where Y is the observed brain signal, and X and Z contain explanatory variables that are thought to be related to the brain signal. The goal is to test the null hypothesis H:β=0 with the nuisance parameters γ included in the model. Several nonparametric (permutation) methods have been proposed for this problem, and each method uses some variant of the F ratio as the test statistic. However, recent research suggests that the F ratio can produce invalid permutation tests of H:β=0 when the ε terms are heteroscedastic (i.e., have non-constant variance), which can occur for a variety of reasons. This study compares the classic F test statistic to the robust W (Wald) test statistic using eight different permutation methods. The results reveal that permutation tests using the F ratio can produce accurate results when the errors are homoscedastic, but high false positive rates when the errors are heteroscedastic. In contrast, permutation tests using the W test statistic produced valid results when the errors were homoscedastic, and asymptotically valid results when the errors were heteroscedastic. In the situation with homoscedastic errors, permutation tests using the W statistic showed slightly reduced power compared to the F statistic, but the difference disappeared as the sample size n increased. Consequently, the W test statistic is recommended for robust nonparametric hypothesis tests of regression coefficients in neuroimaging research.
神经影像学研究中的统计推断通常涉及检验一般线性模型中回归系数的显著性。在许多应用中,研究人员假设模型的形式为 Y=α+Xβ+Zγ+ε,其中 Y 是观察到的大脑信号,X 和 Z 包含被认为与大脑信号相关的解释变量。目标是检验假设 H:β=0,同时将模型中的 nuisance 参数 γ 包括在内。针对这个问题,已经提出了几种非参数(置换)方法,每种方法都使用 F 比的某种变体作为检验统计量。然而,最近的研究表明,当 ε 项为异方差(即具有非恒定方差)时,F 比可能会导致 H:β=0 的无效置换检验,这可能由于各种原因而发生。本研究比较了经典的 F 检验统计量和稳健的 W(Wald)检验统计量,使用了八种不同的置换方法。结果表明,当误差为同方差时,使用 F 比的置换检验可以产生准确的结果,但当误差为异方差时,会产生高的假阳性率。相比之下,当误差为同方差时,使用 W 检验统计量的置换检验产生了有效的结果,当误差为异方差时,也产生了渐近有效的结果。在误差为同方差的情况下,与 F 统计量相比,使用 W 统计量的置换检验的功效略有降低,但随着样本量 n 的增加,这种差异消失了。因此,建议在神经影像学研究中对回归系数进行稳健的非参数假设检验时使用 W 检验统计量。