Suppr超能文献

甘氨酸受体参与了无脊椎脊索动物游泳运动的组织。

A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate.

机构信息

Laboratorio di Fisiologia Animale ed Evoluzione, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italia.

出版信息

BMC Neurosci. 2010 Jan 19;11:6. doi: 10.1186/1471-2202-11-6.

Abstract

BACKGROUND

Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis.

RESULTS

A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody.

CONCLUSIONS

In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago.

摘要

背景

脊椎动物的运动节律性运动模式是在脊髓神经网络中产生的,这些网络被称为脊髓中枢模式发生器(CPG)。模式产生的一个关键要素是位于脊髓中线的中间神经元的甘氨酸能突触传递的作用,它抑制位于对侧的兴奋性神经元。甘氨酸能抑制性驱动允许在运动过程中交替和精确计时的运动输出,例如行走或游泳。为了更好地理解这个系统的进化,我们研究了控制脊椎动物的相对无脊椎脊索动物——海鞘幼虫游泳的神经网络的生理学。

结果

由神经索和运动神经节组成的简化幼虫制备物产生交替的游泳运动。甘氨酸受体的药理学和遗传操作表明,它们参与了这些运动运动的控制。形态分子技术和异源表达实验表明,甘氨酸受体是抑制性的,存在于运动神经元和运动肌肉上,而在神经索中通过用抗甘氨酸抗体标记来鉴定出假定的甘氨酸能中间神经元。

结论

在海鞘中,甘氨酸受体、甘氨酸能传递和假定的甘氨酸能中间神经元在协调游泳运动中起着关键作用,通过存在于运动神经节和神经索中的简单 CPG 进行协调。因此,甘氨酸受体与脊椎动物运动网络之间的强关联现在可能扩展到包括脊索动物门。研究结果表明,“脊髓样”运动的基本网络可能存在于现存脊索动物的共同祖先中,大约在 6.5 亿年前。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e5/2822779/ef1bb442a680/1471-2202-11-6-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验