Suppr超能文献

基于单颗粒电子显微镜数据的自动多模型重构。

Automated multi-model reconstruction from single-particle electron microscopy data.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

出版信息

J Struct Biol. 2010 Apr;170(1):98-108. doi: 10.1016/j.jsb.2010.01.007. Epub 2010 Jan 18.

Abstract

Biological macromolecules can adopt multiple conformational and compositional states due to structural flexibility and alternative subunit assemblies. This structural heterogeneity poses a major challenge in the study of macromolecular structure using single-particle electron microscopy. We propose a fully automated, unsupervised method for the three-dimensional reconstruction of multiple structural models from heterogeneous data. As a starting reference, our method employs an initial structure that does not account for any heterogeneity. Then, a multi-stage clustering is used to create multiple models representative of the heterogeneity within the sample. The multi-stage clustering combines an existing approach based on Multivariate Statistical Analysis to perform clustering within individual Euler angles, and a newly developed approach to sort out class averages from individual Euler angles into homogeneous groups. Structural models are computed from individual clusters. The whole data classification is further refined using an iterative multi-model projection-matching approach. We tested our method on one synthetic and three distinct experimental datasets. The tests include the cases where a macromolecular complex exhibits structural flexibility and cases where a molecule is found in ligand-bound and unbound states. We propose the use of our approach as an efficient way to reconstruct distinct multiple models from heterogeneous data.

摘要

生物大分子由于结构的灵活性和亚基组装的多样性,可以采用多种构象和组成状态。这种结构异质性给使用单颗粒电子显微镜研究大分子结构带来了重大挑战。我们提出了一种全自动、无监督的方法,用于从异质数据中三维重建多个结构模型。作为起始参考,我们的方法使用不考虑任何异质性的初始结构。然后,采用多阶段聚类来创建多个代表样品内异质性的模型。多阶段聚类结合了一种基于多变量统计分析的现有方法,用于在单个欧拉角内进行聚类,以及一种新开发的方法,用于将单个欧拉角中的类平均值分类为同质组。从单个聚类中计算结构模型。使用迭代多模型投影匹配方法进一步细化整个数据分类。我们在一个合成数据集和三个不同的实验数据集上测试了我们的方法。测试包括大分子复合物表现出结构灵活性的情况,以及分子处于配体结合和未结合状态的情况。我们建议使用我们的方法作为一种从异质数据中重建不同的多个模型的有效方法。

相似文献

8

引用本文的文献

1
Algebraic constraints and algorithms for common lines in cryo-EM.冷冻电镜中公共线的代数约束与算法
Biol Imaging. 2024 May 16;4:e9. doi: 10.1017/S2633903X24000072. eCollection 2024.
5
Structural Variability from Noisy Tomographic Projections.来自噪声断层投影的结构变异性
SIAM J Imaging Sci. 2018;11(2):1441-1492. doi: 10.1137/17M1153509. Epub 2018 May 31.
6
Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes.结构异质大分子复合物的冷冻电子显微镜分析
Comput Struct Biotechnol J. 2016 Oct 14;14:385-390. doi: 10.1016/j.csbj.2016.10.002. eCollection 2016.
8
Robust w-Estimators for Cryo-EM Class Means.用于冷冻电镜分类均值的稳健w估计器。
IEEE Trans Image Process. 2016 Feb;25(2):893-906. doi: 10.1109/TIP.2015.2512384. Epub 2015 Dec 24.
9
Principles of cryo-EM single-particle image processing.冷冻电镜单颗粒图像处理原理
Microscopy (Oxf). 2016 Feb;65(1):57-67. doi: 10.1093/jmicro/dfv370. Epub 2015 Dec 24.

本文引用的文献

4

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验