Andén Joakim, Singer Amit
Center for Computational Biology, Flatiron Institute, New York, NY 10100.
Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544.
SIAM J Imaging Sci. 2018;11(2):1441-1492. doi: 10.1137/17M1153509. Epub 2018 May 31.
In cryo-electron microscopy, the three-dimensional (3D) electric potentials of an ensemble of molecules are projected along arbitrary viewing directions to yield noisy two-dimensional images. The volume maps representing these potentials typically exhibit a great deal of structural variability, which is described by their 3D covariance matrix. Typically, this covariance matrix is approximately low rank and can be used to cluster the volumes or estimate the intrinsic geometry of the conformation space. We formulate the estimation of this covariance matrix as a linear inverse problem, yielding a consistent least-squares estimator. For images of size -by- pixels, we propose an algorithm for calculating this covariance estimator with computational complexity , where the condition number is empirically in the range 10-200. Its efficiency relies on the observation that the normal equations are equivalent to a deconvolution problem in six dimensions. This is then solved by the conjugate gradient method with an appropriate circulant preconditioner. The result is the first computationally efficient algorithm for consistent estimation of the 3D covariance from noisy projections. It also compares favorably in runtime with respect to previously proposed nonconsistent estimators. Motivated by the recent success of eigenvalue shrinkage procedures for high-dimensional covariance matrix estimation, we incorporate a shrinkage procedure that improves accuracy at lower signal-to-noise ratios. We evaluate our methods on simulated datasets and achieve classification results comparable to state-of-the-art methods in shorter running time. We also present results on clustering volumes in an experimental dataset, illustrating the power of the proposed algorithm for practical determination of structural variability.
在冷冻电子显微镜中,分子集合的三维(3D)电势沿任意观察方向投影以产生有噪声的二维图像。表示这些电势的体积图通常表现出大量的结构变异性,这由它们的3D协方差矩阵来描述。通常,这个协方差矩阵近似低秩,可用于对体积进行聚类或估计构象空间的内在几何形状。我们将这个协方差矩阵的估计公式化为一个线性逆问题,得到一个一致的最小二乘估计器。对于大小为 - 乘 - 像素的图像,我们提出一种算法来计算这个协方差估计器,其计算复杂度为 ,其中条件数 根据经验在10 - 200范围内。它的效率依赖于这样的观察结果:正规方程等同于一个六维的反卷积问题。然后通过共轭梯度法和适当的循环预条件器来求解。结果是第一个从有噪声投影中一致估计3D协方差的计算高效算法。在运行时间方面,它也优于先前提出的非一致估计器。受高维协方差矩阵估计的特征值收缩程序近期成功的启发,我们纳入了一种收缩程序,该程序在较低信噪比下提高了准确性。我们在模拟数据集上评估我们的方法,并在更短的运行时间内获得与现有最先进方法相当的分类结果。我们还展示了在一个实验数据集上对体积进行聚类的结果,说明了所提出算法在实际确定结构变异性方面的能力。