Suppr超能文献

来自噪声断层投影的结构变异性

Structural Variability from Noisy Tomographic Projections.

作者信息

Andén Joakim, Singer Amit

机构信息

Center for Computational Biology, Flatiron Institute, New York, NY 10100.

Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544.

出版信息

SIAM J Imaging Sci. 2018;11(2):1441-1492. doi: 10.1137/17M1153509. Epub 2018 May 31.

Abstract

In cryo-electron microscopy, the three-dimensional (3D) electric potentials of an ensemble of molecules are projected along arbitrary viewing directions to yield noisy two-dimensional images. The volume maps representing these potentials typically exhibit a great deal of structural variability, which is described by their 3D covariance matrix. Typically, this covariance matrix is approximately low rank and can be used to cluster the volumes or estimate the intrinsic geometry of the conformation space. We formulate the estimation of this covariance matrix as a linear inverse problem, yielding a consistent least-squares estimator. For images of size -by- pixels, we propose an algorithm for calculating this covariance estimator with computational complexity , where the condition number is empirically in the range 10-200. Its efficiency relies on the observation that the normal equations are equivalent to a deconvolution problem in six dimensions. This is then solved by the conjugate gradient method with an appropriate circulant preconditioner. The result is the first computationally efficient algorithm for consistent estimation of the 3D covariance from noisy projections. It also compares favorably in runtime with respect to previously proposed nonconsistent estimators. Motivated by the recent success of eigenvalue shrinkage procedures for high-dimensional covariance matrix estimation, we incorporate a shrinkage procedure that improves accuracy at lower signal-to-noise ratios. We evaluate our methods on simulated datasets and achieve classification results comparable to state-of-the-art methods in shorter running time. We also present results on clustering volumes in an experimental dataset, illustrating the power of the proposed algorithm for practical determination of structural variability.

摘要

在冷冻电子显微镜中,分子集合的三维(3D)电势沿任意观察方向投影以产生有噪声的二维图像。表示这些电势的体积图通常表现出大量的结构变异性,这由它们的3D协方差矩阵来描述。通常,这个协方差矩阵近似低秩,可用于对体积进行聚类或估计构象空间的内在几何形状。我们将这个协方差矩阵的估计公式化为一个线性逆问题,得到一个一致的最小二乘估计器。对于大小为 - 乘 - 像素的图像,我们提出一种算法来计算这个协方差估计器,其计算复杂度为 ,其中条件数 根据经验在10 - 200范围内。它的效率依赖于这样的观察结果:正规方程等同于一个六维的反卷积问题。然后通过共轭梯度法和适当的循环预条件器来求解。结果是第一个从有噪声投影中一致估计3D协方差的计算高效算法。在运行时间方面,它也优于先前提出的非一致估计器。受高维协方差矩阵估计的特征值收缩程序近期成功的启发,我们纳入了一种收缩程序,该程序在较低信噪比下提高了准确性。我们在模拟数据集上评估我们的方法,并在更短的运行时间内获得与现有最先进方法相当的分类结果。我们还展示了在一个实验数据集上对体积进行聚类的结果,说明了所提出算法在实际确定结构变异性方面的能力。

相似文献

1
Structural Variability from Noisy Tomographic Projections.
SIAM J Imaging Sci. 2018;11(2):1441-1492. doi: 10.1137/17M1153509. Epub 2018 May 31.
2
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem.
SIAM J Imaging Sci. 2015 Jan 22;8(1):126-185. doi: 10.1137/130935434.
3
COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:200-204. doi: 10.1109/ISBI.2015.7163849.
4
A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spectral Clustering.
Curr Issues Mol Biol. 2021 Oct 18;43(3):1652-1668. doi: 10.3390/cimb43030117.
6
Covariance Estimation From Compressive Data Partitions Using a Projected Gradient-Based Algorithm.
IEEE Trans Image Process. 2022;31:4817-4827. doi: 10.1109/TIP.2022.3187285. Epub 2022 Jul 15.
7
High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles.
Protoplasma. 2014 Mar;251(2):417-27. doi: 10.1007/s00709-013-0600-1. Epub 2014 Jan 5.
9
Convex Banding of the Covariance Matrix.
J Am Stat Assoc. 2016;111(514):834-845. doi: 10.1080/01621459.2015.1058265. Epub 2016 Aug 18.

引用本文的文献

1
Efficient high-resolution refinement in cryo-EM with stochastic gradient descent.
Acta Crystallogr D Struct Biol. 2025 Jul 1;81(Pt 7):327-343. doi: 10.1107/S205979832500511X. Epub 2025 Jun 23.
2
Method of moments for 3D single particle modeling with non-uniform distribution of viewing angles.
Inverse Probl. 2020 Apr;36(4). doi: 10.1088/1361-6420/ab6139. Epub 2020 Feb 26.
3
Cryo-EM heterogeneity analysis using regularized covariance estimation and kernel regression.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2419140122. doi: 10.1073/pnas.2419140122. Epub 2025 Feb 26.
6
Cryo-EM Heterogeneity Analysis using Regularized Covariance Estimation and Kernel Regression.
bioRxiv. 2024 Sep 6:2023.10.28.564422. doi: 10.1101/2023.10.28.564422.
8
3DFlex: determining structure and motion of flexible proteins from cryo-EM.
Nat Methods. 2023 Jun;20(6):860-870. doi: 10.1038/s41592-023-01853-8. Epub 2023 May 11.
9
Methods for Cryo-EM Single Particle Reconstruction of Macromolecules Having Continuous Heterogeneity.
J Mol Biol. 2023 May 1;435(9):168020. doi: 10.1016/j.jmb.2023.168020. Epub 2023 Feb 28.
10
Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules.
Front Bioinform. 2021 Dec 8;1:788308. doi: 10.3389/fbinf.2021.788308. eCollection 2021.

本文引用的文献

1
A Representation Theory Perspective on Simultaneous Alignment and Classification.
Appl Comput Harmon Anal. 2020 Nov;49(3):1001-1024. doi: 10.1016/j.acha.2019.05.005. Epub 2019 Jun 5.
2
Factor Analysis for Spectral Estimation.
Int Conf Sampl Theory Appl SampTA. 2017 Jul;2017:169-173. doi: 10.1109/SAMPTA.2017.8024447. Epub 2017 Sep 4.
3
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.
Ann Stat. 2018 Aug;46(4):1742-1778. doi: 10.1214/17-AOS1601. Epub 2018 Jun 27.
4
Allosteric effects in bacteriophage HK97 procapsids revealed directly from covariance analysis of cryo EM data.
J Struct Biol. 2018 May;202(2):129-141. doi: 10.1016/j.jsb.2017.12.013. Epub 2018 Jan 10.
5
Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate.
Nat Commun. 2017 Jun 30;8:16099. doi: 10.1038/ncomms16099.
6
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination.
Nat Methods. 2017 Mar;14(3):290-296. doi: 10.1038/nmeth.4169. Epub 2017 Feb 6.
7
Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images.
Curr Opin Struct Biol. 2017 Apr;43:114-121. doi: 10.1016/j.sbi.2016.12.011. Epub 2017 Jan 11.
9
Single particle electron cryomicroscopy: trends, issues and future perspective.
Q Rev Biophys. 2016 Jan;49:e13. doi: 10.1017/S0033583516000068. Epub 2016 Jul 22.
10
COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:200-204. doi: 10.1109/ISBI.2015.7163849.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验