Suppr超能文献

在冷冻电镜三维分类中使用共轭梯度进行协方差估计

COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM.

作者信息

Andén Joakim, Katsevich Eugene, Singer Amit

机构信息

Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ.

Department of Statistics, Stanford University, Stanford, CA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:200-204. doi: 10.1109/ISBI.2015.7163849.

Abstract

Classifying structural variability in noisy projections of biological macromolecules is a central problem in Cryo-EM. In this work, we build on a previous method for estimating the covariance matrix of the three-dimensional structure present in the molecules being imaged. Our proposed method allows for incorporation of contrast transfer function and non-uniform distribution of viewing angles, making it more suitable for real-world data. We evaluate its performance on a synthetic dataset and an experimental dataset obtained by imaging a 70S ribosome complex.

摘要

对生物大分子的噪声投影中的结构变异性进行分类是冷冻电子显微镜中的一个核心问题。在这项工作中,我们基于之前的一种方法来估计成像分子中三维结构的协方差矩阵。我们提出的方法允许纳入对比度传递函数和视角的非均匀分布,使其更适合实际数据。我们在一个合成数据集和通过对70S核糖体复合物成像获得的实验数据集上评估了它的性能。

相似文献

1
COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:200-204. doi: 10.1109/ISBI.2015.7163849.
2
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem.
SIAM J Imaging Sci. 2015 Jan 22;8(1):126-185. doi: 10.1137/130935434.
3
Structural Variability from Noisy Tomographic Projections.
SIAM J Imaging Sci. 2018;11(2):1441-1492. doi: 10.1137/17M1153509. Epub 2018 May 31.
4
Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules.
Bioinformatics. 2020 Feb 15;36(4):1252-1259. doi: 10.1093/bioinformatics/btz728.
5
MAHALANOBIS DISTANCE FOR CLASS AVERAGING OF CRYO-EM IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:654-658. doi: 10.1109/ISBI.2017.7950605. Epub 2017 Jun 19.
6
Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.
Small. 2015 Oct;11(38):5157-63. doi: 10.1002/smll.201500531. Epub 2015 Jul 14.
7
Fast principal component analysis for cryo-electron microscopy images.
Biol Imaging. 2023;3. doi: 10.1017/s2633903x23000028. Epub 2023 Feb 3.
8
A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.
BMC Bioinformatics. 2017 Jul 21;18(1):348. doi: 10.1186/s12859-017-1757-y.
9
Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors.
SIAM J Imaging Sci. 2011 Jun 23;4(2):723-759. doi: 10.1137/090778390.
10
Moment-based metrics for molecules computable from cryogenic electron microscopy images.
Biol Imaging. 2024 Feb 23;4:e3. doi: 10.1017/S2633903X24000023. eCollection 2024.

引用本文的文献

1
A Representation Theory Perspective on Simultaneous Alignment and Classification.
Appl Comput Harmon Anal. 2020 Nov;49(3):1001-1024. doi: 10.1016/j.acha.2019.05.005. Epub 2019 Jun 5.
3
Methods for Cryo-EM Single Particle Reconstruction of Macromolecules Having Continuous Heterogeneity.
J Mol Biol. 2023 May 1;435(9):168020. doi: 10.1016/j.jmb.2023.168020. Epub 2023 Feb 28.
4
Visualizing Conformational Space of Functional Biomolecular Complexes by Deep Manifold Learning.
Int J Mol Sci. 2022 Aug 9;23(16):8872. doi: 10.3390/ijms23168872.
5
Computational Methods for Single-Particle Electron Cryomicroscopy.
Annu Rev Biomed Data Sci. 2020 Jul;3:163-190. doi: 10.1146/annurev-biodatasci-021020-093826. Epub 2020 May 4.
6
Principal component analysis is limited to low-resolution analysis in cryoEM.
Acta Crystallogr D Struct Biol. 2021 Jun 1;77(Pt 6):835-839. doi: 10.1107/S2059798321002291. Epub 2021 May 19.
7
Structural Heterogeneities of the Ribosome: New Frontiers and Opportunities for Cryo-EM.
Molecules. 2020 Sep 17;25(18):4262. doi: 10.3390/molecules25184262.
8
Cryo-EM reconstruction of continuous heterogeneity by Laplacian spectral volumes.
Inverse Probl. 2020 Feb;36(2). doi: 10.1088/1361-6420/ab4f55. Epub 2020 Jan 28.
9
Survey of the analysis of continuous conformational variability of biological macromolecules by electron microscopy.
Acta Crystallogr F Struct Biol Commun. 2019 Jan 1;75(Pt 1):19-32. doi: 10.1107/S2053230X18015108.
10
Structural Variability from Noisy Tomographic Projections.
SIAM J Imaging Sci. 2018;11(2):1441-1492. doi: 10.1137/17M1153509. Epub 2018 May 31.

本文引用的文献

1
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem.
SIAM J Imaging Sci. 2015 Jan 22;8(1):126-185. doi: 10.1137/130935434.
2
How cryo-EM is revolutionizing structural biology.
Trends Biochem Sci. 2015 Jan;40(1):49-57. doi: 10.1016/j.tibs.2014.10.005. Epub 2014 Nov 7.
3
Biochemistry. The resolution revolution.
Science. 2014 Mar 28;343(6178):1443-4. doi: 10.1126/science.1251652.
4
RELION: implementation of a Bayesian approach to cryo-EM structure determination.
J Struct Biol. 2012 Dec;180(3):519-30. doi: 10.1016/j.jsb.2012.09.006. Epub 2012 Sep 19.
5
Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images.
Structure. 2011 Nov 9;19(11):1582-90. doi: 10.1016/j.str.2011.10.003.
6
An introduction to maximum-likelihood methods in cryo-EM.
Methods Enzymol. 2010;482:263-94. doi: 10.1016/S0076-6879(10)82011-7.
7
CLASSIFICATION BY BOOTSTRAPPING IN SINGLE PARTICLE METHODS.
Proc IEEE Int Symp Biomed Imaging. 2010 Apr 14;2010:169-172. doi: 10.1109/ISBI.2010.5490386.
8
Automated multi-model reconstruction from single-particle electron microscopy data.
J Struct Biol. 2010 Apr;170(1):98-108. doi: 10.1016/j.jsb.2010.01.007. Epub 2010 Jan 18.
9
Classification of heterogeneous electron microscopic projections into homogeneous subsets.
Ultramicroscopy. 2008 Mar;108(4):327-38. doi: 10.1016/j.ultramic.2007.05.005. Epub 2007 May 16.
10
Single-particle electron cryo-microscopy: towards atomic resolution.
Q Rev Biophys. 2000 Nov;33(4):307-69. doi: 10.1017/s0033583500003644.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验