Marwood Simon, Constantin-Teodosiu Dumitru, Casey Edel, Whyte Martin, Boobis Leslie, Bowtell Jo
Health and Biology, Liverpool Hope University, Liverpool.
J Sports Sci. 2010;28(3):267-79. doi: 10.1080/02640410903440884.
The existence of an acetyl group deficit at or above 90% of maximal oxygen uptake (VO(2max)) has proved controversial, with contradictory results likely relating to limitations in previous research. The purpose of the present study was to determine whether the "acetyl group deficit" occurs at the start of exercise at 90%VO(2max) in a well-controlled study. Eight male participants (age: 33.6 +/- 2.0 years; VO(2max): 3.60 +/- 0.21 litres . min(-1)) completed two exercise bouts at 90%VO(2max) for 3 min following either 30 min of saline (control) or dichloroacetate (50 mg . kg(-1) body mass) infusion, ending 15 min before exercise. Muscle biopsies were obtained immediately before and after exercise while continuous non-invasive measures of pulmonary oxygen uptake and muscle deoxygenation were made. Muscle pyruvate dehydrogenase activity was significantly higher before exercise following dichloroacetate infusion (control: 2.67 +/- 0.98 vs. dichloroacetate: 17.9 +/- 1.1 mmol acetyl-CoA . min(-1) . mg(-1) protein, P = 0.01) and resulted in higher pre- and post-exercise muscle acetylcarnitine (pre-exercise control: 3.3 +/- 0.95 vs. pre-exercise dichloroacetate: 8.0 +/- 0.88 vs. post-exercise control: 11.9 +/- 1.1 vs. post-exercise dichloroacetate: 17.2 +/- 1.1 mmol . kg(-1) dry muscle, P < 0.05). However, substrate-level phosphorylation (control: 125 +/- 20 vs. dichloroacetate: 113 +/- 13 mmol adenosine triphosphate . kg(-1) dry muscle) and VO(2) kinetics (control: 19.2 +/- 2.2 vs. dichloroacetate: 22.8 +/- 2.5 s), were unaltered. Furthermore, dichloroacetate infusion blunted the slow component of VO(2) and muscle deoxygenation and slowed muscle deoxygenation kinetics, possibly by enhancing oxygen delivery during exercise. These data support the hypothesis that the "acetyl group deficit" does not occur at or above 90%VO(2max).
在最大摄氧量(VO₂max)达到90%及以上时,乙酰基缺乏的存在一直存在争议,先前研究的局限性可能导致了相互矛盾的结果。本研究的目的是在一项严格控制的研究中,确定在运动开始时,当达到90%VO₂max时是否会出现“乙酰基缺乏”。八名男性参与者(年龄:33.6±2.0岁;VO₂max:3.60±0.21升·分钟⁻¹)在分别输注30分钟生理盐水(对照组)或二氯乙酸(50毫克·千克⁻¹体重)后,以90%VO₂max完成两次3分钟的运动,输注在运动前15分钟结束。在运动前后立即进行肌肉活检,同时持续进行肺摄氧量和肌肉脱氧的无创测量。二氯乙酸输注后运动前的肌肉丙酮酸脱氢酶活性显著更高(对照组:2.67±0.98对比二氯乙酸组:17.9±1.1毫摩尔乙酰辅酶A·分钟⁻¹·毫克⁻¹蛋白质,P = 0.01),并导致运动前后肌肉乙酰肉碱水平更高(运动前对照组:3.3±0.95对比运动前二氯乙酸组:8.0±0.88对比运动后对照组:11.9±1.1对比运动后二氯乙酸组:17.2±1.1毫摩尔·千克⁻¹干肌肉,P < 0.05)。然而,底物水平磷酸化(对照组:125±20对比二氯乙酸组:113±13毫摩尔三磷酸腺苷·千克⁻¹干肌肉)和VO₂动力学(对照组:19.2±2.2对比二氯乙酸组:22.8±2.5秒)未发生改变。此外,二氯乙酸输注减弱了VO₂的慢成分和肌肉脱氧,并减缓了肌肉脱氧动力学,这可能是通过在运动期间增强氧气输送实现的。这些数据支持了在VO₂max达到90%及以上时不会出现“乙酰基缺乏”这一假设。