Suppr超能文献

使用疾病-死亡模型的阿尔茨海默病或痴呆症的发病率和死亡率。

Incidence and mortality of Alzheimer's disease or dementia using an illness-death model.

作者信息

Commenges D, Joly P, Letenneur L, Dartigues J F

机构信息

INSERM E03 38, ISPED, 146 rue Léo Saignat, Bordeaux, 33076, France.

出版信息

Stat Med. 2004 Jan 30;23(2):199-210. doi: 10.1002/sim.1709.

Abstract

We present an illness-death model for studying the incidence and the prevalence of Alzheimer's disease or dementia. We argue that the illness-death model is better than a survival model for this purpose. In this model the best choice for the basic time-scale is age. Then we present extensions of this model for incorporating covariates and taking account of a possible effect of calendar time. Calendar time is introduced via a proportional intensity model. We give the likelihood for a mixed discrete-continuous observation pattern from this model: clinical status is observed at discrete visit-times while the date of death is observed exactly or right-censored. The penalized likelihood approach allows to non-parametrically estimate the transition intensities. Application on the data of the Paquid study allows to produce estimates of the age-specific incidence of dementia together with mortality rates of both demented and non-demented subjects. Then the effect of calendar time and educational level are studied. Low educational level increases the risk of dementia. The risk of dementia increases with calendar time while the mortality of demented subjects decreases. The most likely explanation of this result seems to be in a shift in the diagnosis of dementia towards earlier stages of the disease prompted by a change in the perception of dementia and the arrival of new drugs.

摘要

我们提出了一种疾病-死亡模型,用于研究阿尔茨海默病或痴呆症的发病率和患病率。我们认为,为此目的,疾病-死亡模型比生存模型更优。在该模型中,基本时间尺度的最佳选择是年龄。然后我们给出了该模型的扩展形式,用于纳入协变量并考虑日历时间可能产生的影响。日历时间是通过比例强度模型引入的。我们给出了该模型混合离散-连续观测模式的似然函数:临床状态在离散的就诊时间进行观测,而死亡日期则被精确观测或右删失。惩罚似然方法允许对转移强度进行非参数估计。将该模型应用于Paquid研究的数据,可以得出痴呆症年龄特异性发病率的估计值,以及痴呆患者和非痴呆患者的死亡率。随后,我们研究了日历时间和教育水平的影响。低教育水平会增加患痴呆症的风险。痴呆症的风险随日历时间增加,而痴呆患者的死亡率则下降。这一结果最可能的解释似乎是,由于对痴呆症认知的改变和新药的出现,痴呆症的诊断向疾病的早期阶段转移。

相似文献

5
Modelling age-specific risk: application to dementia.特定年龄风险建模:在痴呆症中的应用。
Stat Med. 1998 Sep 15;17(17):1973-88. doi: 10.1002/(sici)1097-0258(19980915)17:17<1973::aid-sim892>3.0.co;2-5.

引用本文的文献

2
Competing Risks Analysis of the Finnish Diabetes Prevention Study.芬兰糖尿病预防研究的竞争风险分析
CPT Pharmacometrics Syst Pharmacol. 2025 Sep;14(9):1459-1469. doi: 10.1002/psp4.70065. Epub 2025 Jun 30.

本文引用的文献

3
Inference for multi-state models from interval-censored data.基于区间删失数据的多状态模型推断
Stat Methods Med Res. 2002 Apr;11(2):167-82. doi: 10.1191/0962280202sm279ra.
6
Multi-state models in epidemiology.流行病学中的多状态模型。
Lifetime Data Anal. 1999 Dec;5(4):315-27. doi: 10.1023/a:1009636125294.
8
Modelling age-specific risk: application to dementia.特定年龄风险建模:在痴呆症中的应用。
Stat Med. 1998 Sep 15;17(17):1973-88. doi: 10.1002/(sici)1097-0258(19980915)17:17<1973::aid-sim892>3.0.co;2-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验