Wang Le, Hubbard Rebecca A, Walker Rod L, Lee Edward B, Larson Eric B, Crane Paul K
Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States of America.
Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States of America.
PLoS One. 2017 Dec 22;12(12):e0190107. doi: 10.1371/journal.pone.0190107. eCollection 2017.
Analyses of imperfectly assessed time to event outcomes give rise to biased hazard ratio estimates. This bias is a common challenge for studies of Alzheimer's Disease (AD) because AD neuropathology can only be identified through brain autopsy and is therefore not available for most study participants. Clinical AD diagnosis, although more widely available, has imperfect sensitivity and specificity relative to AD neuropathology. In this study we present a sensitivity analysis approach using a bias-adjusted discrete proportional hazards model to quantify robustness of results to misclassification of a time to event outcome and apply this method to data from a longitudinal panel study of AD. Using data on 1,955 participants from the Adult Changes in Thought study we analyzed the association between average glucose level and AD neuropathology and conducted sensitivity analyses to explore how estimated hazard ratios varied according to AD classification accuracy. Unadjusted hazard ratios were closer to the null than estimates obtained under most scenarios for misclassification investigated. Confidence interval estimates from the unadjusted model were substantially underestimated compared to adjusted estimates. This study demonstrates the importance of exploring outcome misclassification in time to event analyses and provides an approach that can be undertaken without requiring validation data.
对不完全评估的事件发生时间结局进行分析会导致风险比估计产生偏差。这种偏差是阿尔茨海默病(AD)研究中的一个常见挑战,因为AD神经病理学只能通过脑尸检来识别,因此大多数研究参与者无法获得该信息。临床AD诊断虽然更广泛可用,但相对于AD神经病理学而言,其敏感性和特异性并不完美。在本研究中,我们提出了一种敏感性分析方法,使用偏差调整离散比例风险模型来量化结果对事件发生时间结局误分类的稳健性,并将该方法应用于AD纵向队列研究的数据。利用来自“成人思维变化研究”的1955名参与者的数据,我们分析了平均血糖水平与AD神经病理学之间的关联,并进行了敏感性分析,以探讨估计的风险比如何根据AD分类准确性而变化。与在大多数调查的误分类情况下获得的估计值相比,未调整的风险比更接近无效值。与调整后的估计值相比,未调整模型的置信区间估计值被大幅低估。本研究证明了在事件发生时间分析中探索结局误分类的重要性,并提供了一种无需验证数据即可采用的方法。