Suppr超能文献

使用多个单变量荟萃分析对相关效应量进行推断。

Inference for correlated effect sizes using multiple univariate meta-analyses.

作者信息

Chen Yong, Cai Yi, Hong Chuan, Jackson Dan

机构信息

Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, U.S.A.

Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St, Houston, Texas 77030, U.S.A.

出版信息

Stat Med. 2016 Apr 30;35(9):1405-22. doi: 10.1002/sim.6789. Epub 2015 Nov 4.

Abstract

Multivariate meta-analysis, which involves jointly analyzing multiple and correlated outcomes from separate studies, has received a great deal of attention. One reason to prefer the multivariate approach is its ability to account for the dependence between multiple estimates from the same study. However, nearly all the existing methods for analyzing multivariate meta-analytic data require the knowledge of the within-study correlations, which are usually unavailable in practice. We propose a simple non-iterative method that can be used for the analysis of multivariate meta-analysis datasets, that has no convergence problems, and does not require the use of within-study correlations. Our approach uses standard univariate methods for the marginal effects but also provides valid joint inference for multiple parameters. The proposed method can directly handle missing outcomes under missing completely at random assumption. Simulation studies show that the proposed method provides unbiased estimates, well-estimated standard errors, and confidence intervals with good coverage probability. Furthermore, the proposed method is found to maintain high relative efficiency compared with conventional multivariate meta-analyses where the within-study correlations are known. We illustrate the proposed method through two real meta-analyses where functions of the estimated effects are of interest.

摘要

多变量荟萃分析涉及对来自不同研究的多个相关结果进行联合分析,已受到广泛关注。倾向于采用多变量方法的一个原因是它能够考虑同一研究中多个估计值之间的依赖性。然而,几乎所有现有的用于分析多变量荟萃分析数据的方法都需要研究内相关性的信息,而这在实际中通常是无法获得的。我们提出了一种简单的非迭代方法,可用于多变量荟萃分析数据集的分析,该方法不存在收敛问题,且不需要使用研究内相关性。我们的方法对边际效应使用标准单变量方法,但也为多个参数提供有效的联合推断。所提出的方法在完全随机缺失假设下可以直接处理缺失结果。模拟研究表明,所提出的方法提供无偏估计、估计良好的标准误差以及具有良好覆盖概率的置信区间。此外,与已知研究内相关性的传统多变量荟萃分析相比,所提出的方法具有较高的相对效率。我们通过两个实际的荟萃分析来说明所提出的方法,在这两个分析中,估计效应的函数是我们感兴趣的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e1/5298020/7e68a967e710/SIM-35-1405-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验