Suppr超能文献

新型静电纺丝生物复合材料纳米纤维基底羟基磷灰石/胶原/壳聚糖上成骨细胞的增强矿化作用。

Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan.

机构信息

Division of Bioengineering, National University of Singapore, Singapore, Singapore.

出版信息

Tissue Eng Part A. 2010 Jun;16(6):1949-60. doi: 10.1089/ten.TEA.2009.0221.

Abstract

Electrospun chitosan (CTS)-based hydroxyapatite (HAp)/CTS biocomposite nanofibers for bone tissue engineering could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural bone, but their biological performance is somewhat deficient compared with the HAp/collagen (Col) biocomposite system. This necessitates doping the electrospun HAp/CTS hybrid with the bioactive component of Col. We show herein that Col-doped HAp/CTS biocomposite (i.e., HAp/Col/CTS) containing 27.8 wt% HAp nanoparticles, 7.2 wt% Col, and 57.8 wt% CTS can be successfully electrospun into nanofibrous form through using small amount (7.2 wt%) of ultrahigh-molecular-weight poly(ethylene oxide) as the fiber-forming additive. Morphology, structure, composition, and mechanical properties of the electrospun HAp/Col/CTS scaffolds were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy, and tensile tests, respectively. Human fetal osteoblasts on the nanofibrous HAp/Col/CTS scaffolds were cultured for up to 15 days to assess the cell-scaffold interaction and biomineralization effect. In comparison with different controls, significant increments in osteoblast proliferation, alkaline phosphatase expression, and mineral deposition were observed. Results obtained thus highlight that introduction of Col can significantly enhance the biological performance of osteoblasts on the CTS-based nanofibrous substrates and suggest that current electrospun HAp/Col/CTS biocomposite, as a highly biomimetic and bioactive nanofibrous structure, may be one of the most attractive candidates for various osteoregeneration-related applications.

摘要

用于骨组织工程的静电纺丝壳聚糖(CTS)基羟基磷灰石(HAp)/CTS 生物复合材料纳米纤维可以提供与纤维状纳米结构和分层组织的天然骨的组成成分非常相似的仿生特性,但与 HAp/胶原蛋白(Col)生物复合材料系统相比,其生物学性能有些不足。这需要将静电纺丝 HAp/CTS 杂化物掺杂到 Col 的生物活性成分中。本文表明,含有 27.8wt%HAp 纳米颗粒、7.2wt%Col 和 57.8wt%CTS 的 Col 掺杂 HAp/CTS 生物复合材料(即 HAp/Col/CTS)可以通过使用少量(7.2wt%)超高分子量聚氧化乙烯(PEO)作为纤维形成添加剂成功地静电纺成纳米纤维形式。通过场发射扫描电子显微镜(FESEM)和原子力显微镜(AFM)、X 射线衍射(XRD)、傅里叶变换红外光谱和拉伸试验分别对静电纺丝 HAp/Col/CTS 支架的形貌、结构、组成和力学性能进行了研究。将人胎成骨细胞接种到纳米纤维 HAp/Col/CTS 支架上培养长达 15 天,以评估细胞-支架相互作用和生物矿化效果。与不同对照相比,观察到成骨细胞增殖、碱性磷酸酶表达和矿化沉积显著增加。因此,结果突出表明 Col 的引入可以显著提高 CTS 基纳米纤维基质上成骨细胞的生物学性能,并表明当前静电纺丝 HAp/Col/CTS 生物复合材料作为一种高度仿生和生物活性的纳米纤维结构,可能是最具吸引力的候选者之一,用于各种与骨再生相关的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验