Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore; Department of Physics and Nanotechnology, SRM University, Kattankulathur, Chennai, India; Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University, Taiwan.
Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore.
Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:337-346. doi: 10.1016/j.msec.2018.11.033. Epub 2018 Nov 24.
Far-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp). We attempted to investigate the interaction between the human foetal osteoblasts (hFOB) with ZnO doped HAp incorporated biocomposite poly(L-lactic acid)-co-poly(ε-caprolactone) and silk fibroin (PLACL/SF) nanofibrous scaffolds for osteoblasts mineralization in bone tissue regeneration. The present study, we doped ZnO with HAp (ZnO(HAp) using the sol-gel ethanol condensation technique. The properties of PLACL/SF/ZnO(HAp) biocomposite nanofibrous scaffolds enhanced with doped and blended ZnO/HAp were characterized using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Contact angle and Tensile studies to determine the morphology, functionality, wettability and stability. The in vitro study results showed that the addition of ZnO and HAp enhances the secretion of bone mineral matrix (98%) with smaller fiber diameter (139.4 ± 27 nm) due to the presence of silk fibroin showing potential tensile properties (322.4%), and increased the proliferation of osteoblasts for bone tissue regeneration.
在组织工程学中,远程进化使得能够开发生物活性和可生物降解的材料,以生成用于骨修复和替代治疗的生物复合纳米纤维支架。聚合物生物活性纳米纤维旨在模拟天然细胞外基质 (ECM),为药物输送和组织工程应用提供巨大的再生潜力。几十年来,人们已经知道氧化锌 (ZnO) 纳米粒子在与羟基磷灰石 (HAp) 结合时可以促进骨生长并促进成骨细胞的增殖。我们试图研究人胎骨细胞 (hFOB) 与掺入羟基磷灰石的 ZnO 掺杂生物复合聚 (L-丙交酯)-共-聚 (ε-己内酯)-丝素纤维 (PLACL/SF) 纳米纤维支架之间的相互作用,以促进骨组织再生中的成骨细胞矿化。在本研究中,我们使用溶胶-凝胶乙醇缩合技术将 ZnO 掺杂到 HAp 中(ZnO(HAp)。使用扫描电子显微镜 (SEM)、傅里叶变换红外光谱 (FTIR)、接触角和拉伸研究来表征 PLACL/SF/ZnO(HAp) 生物复合纳米纤维支架的特性,以确定形态、功能、润湿性和稳定性。体外研究结果表明,由于丝素纤维的存在,添加 ZnO 和 HAp 增强了骨矿物质基质的分泌(98%),并且纤维直径更小(139.4 ± 27 nm),表现出潜在的拉伸性能(322.4%),并增加了成骨细胞的增殖,以促进骨组织再生。