Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA.
J Biol Chem. 2010 Mar 19;285(12):9077-89. doi: 10.1074/jbc.M109.054940. Epub 2010 Jan 20.
The Na(v)1.2 and Na(v)1.3 voltage-gated sodium channel isoforms demonstrate distinct differences in their kinetics and voltage dependence of fast inactivation when expressed in Xenopus oocytes. Co-expression of the auxiliary beta1 subunit accelerated inactivation of both the Na(v)1.2 and Na(v)1.3 isoforms, but it did not eliminate the differences, demonstrating that this property is inherent in the alpha subunit. By constructing chimeric channels between Na(v)1.2 and Na(v)1.3, we demonstrate that the carboxyl terminus is responsible for the differences. The Na(v)1.2 carboxyl terminus caused faster inactivation in the Na(v)1.3 backbone, and the Na(v)1.3 carboxyl terminus caused slower inactivation in the Na(v)1.2 channel. Through analysis of truncated channels, we identified a homologous 60-amino acid region within the carboxyl terminus of the Na(v)1.2 and the Na(v)1.3 channels that is responsible for this modulation of fast inactivation. Site-directed replacement of Na(v)1.3 lysine 1826 in this region to its Na(v)1.2 analogue glutamic acid 1880 (K1826E) shifted the voltage dependence of inactivation toward that of Na(v)1.2. The K1826E mutation also accelerated the inactivation kinetics to a level comparable with that of Na(v)1.2. The reverse Na(v)1.2 E1880K mutation exhibited much slower inactivation kinetics and depolarized inactivation voltage dependence. A complementary mutation located within the inactivation linker of Na(v)1.3 (K1453E) caused inactivation changes mirroring those caused by the K1826E mutation in Na(v)1.3. Therefore, we have identified a homologous carboxyl-terminal residue that regulates the kinetics and voltage dependence of fast inactivation in sodium channels, possibly via a charge-dependent interaction with the inactivation linker.
钠离子通道 Na(v)1.2 和 Na(v)1.3 两种亚型在 Xenopus 卵母细胞中的表达具有不同的动力学和快速失活的电压依赖性。辅助β1 亚基的共表达加速了 Na(v)1.2 和 Na(v)1.3 两种亚型的失活,但并没有消除差异,这表明这种特性是由α亚基所固有。通过构建 Na(v)1.2 和 Na(v)1.3 之间的嵌合体通道,我们证明羧基末端是造成差异的原因。Na(v)1.2 羧基末端使 Na(v)1.3 骨架中的失活更快,而 Na(v)1.3 羧基末端使 Na(v)1.2 通道中的失活更慢。通过对截断通道的分析,我们确定了 Na(v)1.2 和 Na(v)1.3 通道羧基末端内负责这种快速失活调节的同源 60 个氨基酸区域。该区域中 Na(v)1.3 赖氨酸 1826 替换为其 Na(v)1.2 类似物谷氨酸 1880(K1826E),使失活的电压依赖性向 Na(v)1.2 转变。K1826E 突变还使失活动力学加速到与 Na(v)1.2 相当的水平。相反的 Na(v)1.2 E1880K 突变表现出失活动力学明显较慢,并且去极化失活电压依赖性。Na(v)1.3 失活连接子内的互补突变(K1453E)导致的失活变化与 Na(v)1.3 中 K1826E 突变引起的失活变化相似。因此,我们已经确定了一个同源的羧基末端残基,它可能通过与失活连接子的电荷依赖性相互作用,调节钠离子通道快速失活的动力学和电压依赖性。