Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea.
Sci Adv. 2023 Mar 10;9(10):eadf0925. doi: 10.1126/sciadv.adf0925.
Anisotropically organized neural networks are indispensable routes for functional connectivity in the brain, which remains largely unknown. While prevailing animal models require additional preparation and stimulation-applying devices and have exhibited limited capabilities regarding localized stimulation, no in vitro platform exists that permits spatiotemporal control of chemo-stimulation in anisotropic three-dimensional (3D) neural networks. We present the integration of microchannels seamlessly into a fibril-aligned 3D scaffold by adapting a single fabrication principle. We investigated the underlying physics of elastic microchannels' ridges and interfacial sol-gel transition of collagen under compression to determine a critical window of geometry and strain. We demonstrated the spatiotemporally resolved neuromodulation in an aligned 3D neural network by local deliveries of KCl and Ca signal inhibitors, such as tetrodotoxin, nifedipine, and mibefradil, and also visualized Ca signal propagation with a speed of ~3.7 m/s. We anticipate that our technology will pave the way to elucidate functional connectivity and neurological diseases associated with transsynaptic propagation.
各向异性组织的神经网络是大脑功能连接所必需的途径,但这在很大程度上尚不清楚。虽然流行的动物模型需要额外的准备和刺激施加设备,并且在局部刺激方面表现出有限的能力,但没有体外平台可以允许在各向异性的三维(3D)神经网络中进行时空控制的化学刺激。我们通过采用单一的制造原理,将微通道无缝集成到纤维排列的 3D 支架中。我们研究了弹性微通道脊的基础物理学和胶原蛋白的界面溶胶-凝胶转变在压缩下,以确定几何形状和应变的临界窗口。我们通过局部递送电信号抑制剂如河豚毒素、硝苯地平和米贝地尔以及钙信号抑制剂,在对齐的 3D 神经网络中实现了时空分辨的神经调节,并且还以约 3.7 m/s 的速度可视化了钙信号的传播。我们预计,我们的技术将为阐明与突触间传播相关的功能连接和神经疾病铺平道路。