Instituto de Tecnologia Química e Biológica, Av. da República (EAN), 2780-157 Oeiras, Portugal.
J Biol Chem. 2010 Apr 2;285(14):10370-5. doi: 10.1074/jbc.M109.078337. Epub 2010 Jan 20.
Biological macromolecules involved in electron transfer reactions display chains of closely packed redox cofactors when long distances must be bridged. This is a consequence of the need to maintain a rate of transfer compatible with metabolic activity in the framework of the exponential decay of electron tunneling with distance. In this work intermolecular electron transfer was studied in kinetic experiments performed with the small tetraheme cytochrome from Shewanella oneidensis MR-1 and from Shewanella frigidimarina NCIMB400 using non-physiological redox partners. This choice allowed the effect of specific recognition and docking to be eliminated from the measured rates. The results were analyzed with a kinetic model that uses the extensive thermodynamic characterization of these proteins reported in the literature to discriminate the kinetic contribution of each heme to the overall rate of electron transfer. This analysis shows that, in this redox chain that spans 23 A, the kinetic properties of the individual hemes establish a functional specificity for each redox center. This functional specificity combined with the thermodynamic properties of these soluble proteins ensures directional electron flow within the cytochrome even outside of the context of a functioning respiratory chain.
当需要跨越长距离时,参与电子转移反应的生物大分子会显示出紧密堆积的氧化还原辅因子链。这是由于需要在电子隧穿随距离指数衰减的框架内保持与代谢活性兼容的转移速率的结果。在这项工作中,使用来自 Shewanella oneidensis MR-1 和 Shewanella frigidimarina NCIMB400 的小四聚体细胞色素进行了动力学实验,研究了分子间电子转移,使用非生理氧化还原伴侣。这种选择消除了从测量速率中排除特定识别和对接的效果。结果使用动力学模型进行了分析,该模型使用文献中报道的这些蛋白质的广泛热力学特性来区分每个血红素对电子转移总速率的动力学贡献。该分析表明,在跨越 23 A 的这种氧化还原链中,单个血红素的动力学特性为每个氧化还原中心建立了功能特异性。这种功能特异性与这些可溶性蛋白质的热力学特性相结合,即使在没有功能呼吸链的情况下,也能确保细胞色素内的定向电子流。