Suppr超能文献

小鼠脊髓背角中基因定义的抑制性神经元:在虚构运动期间对运动神经元进行节律性抑制的可能来源。

Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion.

机构信息

Neuroscience Institute, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.

出版信息

J Neurosci. 2010 Jan 20;30(3):1137-48. doi: 10.1523/JNEUROSCI.1401-09.2010.

Abstract

To ensure alternation of flexor and extensor muscles during locomotion, the spinal locomotor network provides rhythmic inhibition to motoneurons. The source of this inhibition in mammals is incompletely defined. We have identified a population of GABAergic interneurons located in medial laminae V/VI that express green fluorescent protein (GFP) in glutamic acid decarboxylase-65::GFP transgenic mice. Immunohistochemical studies revealed GFP+ terminals in apposition to motoneuronal somata, neurons in Clarke's column, and in laminae V/VI where they apposed GFP+ interneurons, thus forming putative reciprocal connections. Whole-cell patch-clamp recordings from GFP+ interneurons in spinal cord slices revealed a range of electrophysiological profiles, including sag and postinhibitory rebound potentials. Most neurons fired tonically in response to depolarizing current injection. Calcium transients demonstrated by two-photon excitation microscopy in the hemisected spinal cord were recorded in response to low-threshold dorsal root stimulation, indicating these neurons receive primary afferent input. Following a locomotor task, the number of GFP+ neurons expressing Fos increased, indicating that these neurons are active during locomotion. During fictive locomotion induced in the hemisected spinal cord, two-photon excitation imaging demonstrated rhythmic calcium activity in these interneurons, which correlated with the termination of ventral root bursts. We suggest that these dorsomedial GABAergic interneurons are involved in spinal locomotor networks, and may provide direct rhythmic inhibitory input to motoneurons during locomotion.

摘要

为确保运动时屈肌和伸肌的交替,脊髓运动网络会向运动神经元提供节律性抑制。哺乳动物中这种抑制的来源尚未完全确定。我们在谷氨酸脱羧酶-65::GFP 转基因小鼠中发现了一群位于内侧 V/VI 层的 GABA 能中间神经元,它们表达绿色荧光蛋白(GFP)。免疫组织化学研究显示 GFP+末梢与运动神经元胞体、Clarke 柱中的神经元以及 V/VI 层中的 GFP+中间神经元接触,从而形成潜在的互传连接。脊髓切片中 GFP+中间神经元的全细胞膜片钳记录显示出一系列电生理特征,包括凹陷和后抑制反弹电位。大多数神经元在去极化电流注入时产生紧张放电。通过半切脊髓中的双光子激发显微镜记录的钙瞬变,响应低阈值背根刺激,表明这些神经元接收初级传入输入。在运动任务后,表达 Fos 的 GFP+神经元数量增加,表明这些神经元在运动过程中是活跃的。在半切脊髓中诱导的虚构运动期间,双光子激发成像显示这些中间神经元的钙活动具有节律性,与腹根爆发的终止相关。我们认为这些背内侧 GABA 能中间神经元参与脊髓运动网络,并且可能在运动过程中向运动神经元提供直接的节律性抑制输入。

相似文献

引用本文的文献

2
Spinal Interneurons: Diversity and Connectivity in Motor Control.脊髓中间神经元:运动控制中的多样性和连通性。
Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.
4
Functional Characterization of Lamina X Neurons in Spinal Cord Preparation.脊髓制备中板层X神经元的功能特性
Front Cell Neurosci. 2017 Nov 1;11:342. doi: 10.3389/fncel.2017.00342. eCollection 2017.
5
And yet it moves: Recovery of volitional control after spinal cord injury.然而它在动:脊髓损伤后的意志控制恢复。
Prog Neurobiol. 2018 Jan;160:64-81. doi: 10.1016/j.pneurobio.2017.10.004. Epub 2017 Nov 2.
7
Rebound from Inhibition: Self-Correction against Neurodegeneration?抑制反弹:针对神经退行性变的自我纠正?
J Clin Cell Immunol. 2017 Apr;8(2). doi: 10.4172/2155-9899.1000492. Epub 2017 Mar 13.
9
Decoding the organization of spinal circuits that control locomotion.解析控制运动的脊髓回路的组织架构。
Nat Rev Neurosci. 2016 Apr;17(4):224-38. doi: 10.1038/nrn.2016.9. Epub 2016 Mar 3.

本文引用的文献

5
Organization of mammalian locomotor rhythm and pattern generation.哺乳动物运动节律与模式生成的组织
Brain Res Rev. 2008 Jan;57(1):134-46. doi: 10.1016/j.brainresrev.2007.08.006. Epub 2007 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验