Suppr超能文献

脊髓中间神经元:运动控制中的多样性和连通性。

Spinal Interneurons: Diversity and Connectivity in Motor Control.

机构信息

Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA; email:

出版信息

Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.

Abstract

The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.

摘要

脊髓是运动内在网络的所在地。只要提供一些兴奋性驱动,例如物理、药理学或电刺激,完全切断脊髓与大脑的联系的动物仍然可以产生有节奏、有模式的运动。然而,要定义产生这些运动的基础电路仍然是一个挑战,因为脊髓中包含多种神经元类型,其相互连接的模式仍未得到很好的理解。运动的计算模型因此依赖于关于脊髓神经元网络元素身份和连接性的未经测试的假设。在这篇综述中,我们考虑了脊髓神经元的类别、它们的相互连接以及它们在脊髓长轴上的电路连接的意义。我们提出了几种分析方法,以朝着明确理解脊髓网络的方向前进。

相似文献

1
Spinal Interneurons: Diversity and Connectivity in Motor Control.
Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.
3
Partly shared spinal cord networks for locomotion and scratching.
Integr Comp Biol. 2011 Dec;51(6):890-902. doi: 10.1093/icb/icr041. Epub 2011 Jun 22.
5
Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
J Neurosci. 2019 Mar 6;39(10):1771-1782. doi: 10.1523/JNEUROSCI.0326-18.2018. Epub 2018 Dec 21.
7
Deciphering the organization and modulation of spinal locomotor central pattern generators.
J Exp Biol. 2006 Jun;209(Pt 11):2007-14. doi: 10.1242/jeb.02213.
8
Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
J Neurosci. 2016 Jan 20;36(3):926-37. doi: 10.1523/JNEUROSCI.1825-15.2016.
9
Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord.
Prog Neurobiol. 2003 Jul;70(4):347-61. doi: 10.1016/s0301-0082(03)00091-1.
10
Origin and circuitry of spinal locomotor interneurons generating different speeds.
Curr Opin Neurobiol. 2018 Dec;53:16-21. doi: 10.1016/j.conb.2018.04.024. Epub 2018 May 4.

引用本文的文献

1
The spinal premotor network driving scratching flexor and extensor alternation.
Cell Rep. 2025 Jun 17;44(6):115845. doi: 10.1016/j.celrep.2025.115845.
2
V2b Neurons Act via Multiple Targets to Produce in Phase Inhibition during Locomotion.
J Neurosci. 2025 Jul 16;45(29):e1530242025. doi: 10.1523/JNEUROSCI.1530-24.2025.
3
The spinal premotor network driving scratching flexor and extensor alternation.
bioRxiv. 2025 Jan 8:2025.01.08.631866. doi: 10.1101/2025.01.08.631866.
4
A brain-wide map of descending inputs onto spinal V1 interneurons.
Neuron. 2025 Feb 19;113(4):524-538.e6. doi: 10.1016/j.neuron.2024.11.019. Epub 2024 Dec 23.
5
Transsynaptic labeling and transcriptional control of zebrafish neural circuits.
Nat Neurosci. 2025 Jan;28(1):189-200. doi: 10.1038/s41593-024-01815-z. Epub 2024 Dec 19.
6
Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development.
Front Cell Neurosci. 2024 Oct 16;18:1466056. doi: 10.3389/fncel.2024.1466056. eCollection 2024.
7
Molecular and Cellular Mechanisms of Motor Circuit Development.
J Neurosci. 2024 Oct 2;44(40):e1238242024. doi: 10.1523/JNEUROSCI.1238-24.2024.
10
The rhythm is going to get you.
Elife. 2024 Aug 27;13:e102428. doi: 10.7554/eLife.102428.

本文引用的文献

1
Movement is governed by rotational neural dynamics in spinal motor networks.
Nature. 2022 Oct;610(7932):526-531. doi: 10.1038/s41586-022-05293-w. Epub 2022 Oct 12.
2
Organization of the gravity-sensing system in zebrafish.
Nat Commun. 2022 Aug 27;13(1):5060. doi: 10.1038/s41467-022-32824-w.
3
Developmental switch in the function of inhibitory commissural V0d interneurons in zebrafish.
Curr Biol. 2022 Aug 22;32(16):3515-3528.e4. doi: 10.1016/j.cub.2022.06.059. Epub 2022 Jul 18.
4
The role of intraspinal sensory neurons in the control of quadrupedal locomotion.
Curr Biol. 2022 Jun 6;32(11):2442-2453.e4. doi: 10.1016/j.cub.2022.04.019. Epub 2022 May 4.
6
Diversified physiological sensory input connectivity questions the existence of distinct classes of spinal interneurons.
iScience. 2022 Mar 17;25(4):104083. doi: 10.1016/j.isci.2022.104083. eCollection 2022 Apr 15.
7
V3 Interneurons Are Active and Recruit Spinal Motor Neurons during Fictive Swimming in Larval Zebrafish.
eNeuro. 2022 Mar 28;9(2). doi: 10.1523/ENEURO.0476-21.2022. Print 2022 Mar-Apr.
8
Voltage imaging identifies spinal circuits that modulate locomotor adaptation in zebrafish.
Neuron. 2022 Apr 6;110(7):1211-1222.e4. doi: 10.1016/j.neuron.2022.01.001. Epub 2022 Jan 31.
9
Control of mammalian locomotion by ventral spinocerebellar tract neurons.
Cell. 2022 Jan 20;185(2):328-344.e26. doi: 10.1016/j.cell.2021.12.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验