Suppr超能文献

具有内皮化微孔中空纤维主动混合的生物杂交人工肺原型。

A biohybrid artificial lung prototype with active mixing of endothelialized microporous hollow fibers.

机构信息

The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania 15213, USA.

出版信息

Biotechnol Bioeng. 2010 Jun 15;106(3):490-500. doi: 10.1002/bit.22675.

Abstract

Acute respiratory distress syndrome (ARDS) affects nearly 150,000 patients per year in the US, and is associated with high mortality ( approximately 40%) and suboptimal options for patient care. Mechanical ventilation and extracorporeal membrane oxygenation are limited to short-term use due to ventilator-induced lung injury and poor biocompatibility, respectively. In this report, we describe the development of a biohybrid lung prototype, employing a rotating endothelialized microporous hollow fiber (MHF) bundle to improve blood biocompatibility while MHF mixing could contribute to gas transfer efficiency. MHFs were surface modified with radio frequency glow discharge (RFGD) and protein adsorption to promote endothelial cell (EC) attachment and growth. The MHF bundles were placed in the biohybrid lung prototype and rotated up to 1,500 revolutions per minute (rpm) using speed ramping protocols to condition ECs to remain adherent on the fibers. Oxygen transfer, thrombotic deposition, and EC p-selectin expression were evaluated as indicators of biohybrid lung functionality and biocompatibility. A fixed aliquot of blood in contact with MHF bundles rotated at either 250 or 750 rpm reached saturating pO(2) levels more quickly with increased rpm, supporting the concept that fiber rotation would positively contribute to oxygen transfer. The presence of ECs had no effect on the rate of oxygen transfer at lower fiber rpm, but did provide some resistance with increased rpm when the overall rate of mass transfer was higher due to active mixing. RFGD followed by fibronectin adsorption on MHFs facilitated near confluent EC coverage with minimal p-selectin expression under both normoxic and hyperoxic conditions. Indeed, even subconfluent EC coverage on MHFs significantly reduced thrombotic deposition adding further support that endothelialization enhances, blood biocompatibility. Overall these findings demonstrate a proof-of-concept that a rotating endothelialized MHF bundle enhances gas transfer and biocompatibility, potentially producing safer, more efficient artificial lungs.

摘要

急性呼吸窘迫综合征(ARDS)影响美国每年近 150,000 名患者,死亡率高(约 40%),患者护理选择不佳。机械通气和体外膜氧合分别由于呼吸机引起的肺损伤和较差的生物相容性而限制在短期使用。在本报告中,我们描述了一种生物杂交肺原型的开发,该原型采用旋转的内皮化微孔中空纤维(MHF)束,以改善血液生物相容性,同时 MHF 混合可有助于气体传递效率。MHF 经射频辉光放电(RFGD)和蛋白质吸附进行表面改性,以促进内皮细胞(EC)附着和生长。MHF 束被放置在生物杂交肺原型中,并使用速度斜坡协议以高达 1,500 转/分钟(rpm)的速度旋转,以使 EC 适应在纤维上保持附着。氧传递、血栓沉积和 EC p-选择素表达被评估为生物杂交肺功能和生物相容性的指标。与 MHF 束接触的固定血液等分试样以 250 或 750 rpm 旋转,随着 rpm 的增加,更快地达到饱和 pO 2 水平,支持纤维旋转将对氧传递产生积极贡献的概念。在较低纤维 rpm 下,EC 的存在对氧传递速率没有影响,但当整体传质速率由于主动混合而更高时,会在增加 rpm 时提供一些阻力。在正常氧和高氧条件下,MHF 上的 RFGD 随后进行纤连蛋白吸附促进了接近致密的 EC 覆盖,p-选择素表达最小。实际上,即使 MHF 上的 EC 覆盖率不足,也会大大减少血栓沉积,这进一步表明内皮化增强了血液生物相容性。总的来说,这些发现证明了一个概念验证,即旋转的内皮化 MHF 束增强了气体传递和生物相容性,可能产生更安全、更有效的人工肺。

相似文献

1
A biohybrid artificial lung prototype with active mixing of endothelialized microporous hollow fibers.
Biotechnol Bioeng. 2010 Jun 15;106(3):490-500. doi: 10.1002/bit.22675.
2
Evaluation of a pumping assist lung that uses a rotating fiber bundle.
ASAIO J. 2005 Nov-Dec;51(6):773-80. doi: 10.1097/01.mat.0000178970.00971.43.
3
EndOxy: Dynamic Long-Term Evaluation of Endothelialized Gas Exchange Membranes for a Biohybrid Lung.
Ann Biomed Eng. 2020 Feb;48(2):747-756. doi: 10.1007/s10439-019-02401-2. Epub 2019 Nov 21.
4
Fiber Bundle Design for an Integrated Wearable Artificial Lung.
ASAIO J. 2017 Sep/Oct;63(5):631-636. doi: 10.1097/MAT.0000000000000542.
5
A pumping intravascular artificial lung with active mixing.
ASAIO J. 1993 Jul-Sep;39(3):M466-9. doi: 10.1097/00002480-199307000-00063.
8
A new multilayered composite hollow fiber membrane for artificial lung.
Artif Organs. 1990 Oct;14(5):369-72. doi: 10.1111/j.1525-1594.1990.tb02982.x.
9
A novel method for measuring hollow fiber membrane permeability in a gas-liquid system.
ASAIO J. 1996 Sep-Oct;42(5):M446-51. doi: 10.1097/00002480-199609000-00028.
10
Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung.
Acta Biomater. 2017 Mar 1;50:510-521. doi: 10.1016/j.actbio.2016.12.017. Epub 2016 Dec 9.

引用本文的文献

1
Biohybrid lung Development: Towards Complete Endothelialization of an Assembled Extracorporeal Membrane Oxygenator.
Bioengineering (Basel). 2023 Jan 5;10(1):72. doi: 10.3390/bioengineering10010072.
3
The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives.
Membranes (Basel). 2021 Mar 28;11(4):239. doi: 10.3390/membranes11040239.
4
Advances in extracorporeal membrane oxygenator design for artificial placenta technology.
Artif Organs. 2021 Mar;45(3):205-221. doi: 10.1111/aor.13827. Epub 2020 Nov 4.
5
Toward a Long-Term Artificial Lung.
ASAIO J. 2020 Aug;66(8):847-854. doi: 10.1097/MAT.0000000000001139.
6
Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche.
Front Bioeng Biotechnol. 2020 Apr 15;8:269. doi: 10.3389/fbioe.2020.00269. eCollection 2020.
7
EndOxy: Dynamic Long-Term Evaluation of Endothelialized Gas Exchange Membranes for a Biohybrid Lung.
Ann Biomed Eng. 2020 Feb;48(2):747-756. doi: 10.1007/s10439-019-02401-2. Epub 2019 Nov 21.
8
Artificial lung.
J Thorac Dis. 2018 Jul;10(Suppl 20):S2329-S2332. doi: 10.21037/jtd.2017.12.89.
9
Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.
Biomed Res Int. 2017;2017:5258196. doi: 10.1155/2017/5258196. Epub 2017 Aug 23.
10
ENDOXY - Development of a Biomimetic Oxygenator-Test-Device.
PLoS One. 2015 Dec 18;10(12):e0142961. doi: 10.1371/journal.pone.0142961. eCollection 2015.

本文引用的文献

1
Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.
Curr Pharm Des. 2009;15(12):1358-72. doi: 10.2174/138161209787846702.
2
3
Extracorporeal gas exchange.
Curr Opin Crit Care. 2009 Feb;15(1):52-8. doi: 10.1097/MCC.0b013e3283220e1f.
4
Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.
Artif Organs. 2009 Jan;33(1):36-45. doi: 10.1111/j.1525-1594.2008.00672.x.
5
Blood compatibility evaluation of elastic gelatin gel from salmon collagen.
J Biosci Bioeng. 2008 Oct;106(4):412-5. doi: 10.1263/jbb.106.412.
6
Artificial lung: current perspectives.
Minerva Chir. 2008 Oct;63(5):363-72.
7
Insensible water loss from the Jostra Quadrox D oxygenator: an in vitro study.
Perfusion. 2007 Nov;22(6):407-10. doi: 10.1177/0267659108091337.
9
Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis.
BMJ. 2008 May 3;336(7651):1006-9. doi: 10.1136/bmj.39537.939039.BE. Epub 2008 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验