Suppr超能文献

利用生物催化在肽自组装中的作用。

Exploiting biocatalysis in peptide self-assembly.

机构信息

CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton South, VIC 3169, Australia.

出版信息

Biopolymers. 2010;94(1):107-17. doi: 10.1002/bip.21346.

Abstract

This review article covers recent developments in the use of enzyme-catalyzed reactions to control molecular self-assembly (SA), an area that merges the advantages of biocatalysis with soft materials self-assembly. This approach is attractive because it combines biological (chemo-, regio-, and enantio-) selectivity with the versatility of bottom up nanofabrication through dynamic SA. We define enzyme-assisted SA (e-SA) as the production of molecular building blocks from nonassembling precursors via enzymatic catalysis, where molecular building blocks form ordered structures via noncovalent interactions. The molecular design of SA precursors is discussed in terms of three key components related to (i) enzyme recognition, (ii) molecular switching mechanisms, and (iii) supramolecular interactions that underpin SA. This is followed by a discussion of a number of unique features of these systems, including spatiotemporal control of nucleation and structure growth, the possibility of controlling mechanical properties and the defect correcting and component selecting capabilities of systems that operate under thermodynamic control. Applications in biomedicine (biosensing, controlled release, matrices for wound healing, controlling cell fate by gelation) and bio(nano)technology (biocatalysts immobilization, nanofabrication, templating, and intracellular imaging) are discussed. Overall, e-SA allows for unprecedented control over SA processes and provides a step forward toward production of nanostructures of higher complexity and with fewer defects as desired for next generation nanomaterials.

摘要

本文综述了近年来利用酶催化反应控制分子自组装(SA)的最新进展,该领域融合了生物催化与软物质自组装的优势。这种方法很有吸引力,因为它结合了生物(化学、区域和对映选择性)选择性和通过动态 SA 进行自下而上的纳米制造的多功能性。我们将酶辅助 SA(e-SA)定义为通过酶催化从非组装前体生产分子构建块的过程,其中分子构建块通过非共价相互作用形成有序结构。SA 前体的分子设计根据与(i)酶识别、(ii)分子开关机制和(iii)支撑 SA 的超分子相互作用相关的三个关键组件进行讨论。随后讨论了这些系统的一些独特特征,包括成核和结构生长的时空控制、控制机械性能的可能性以及在热力学控制下运行的系统的缺陷修正和组件选择能力。讨论了其在生物医学(生物传感、控制释放、伤口愈合基质、通过凝胶化控制细胞命运)和生物(纳米)技术(生物催化剂固定化、纳米制造、模板化和细胞内成像)中的应用。总的来说,e-SA 允许对 SA 过程进行前所未有的控制,并朝着生产具有更高复杂性和更少缺陷的下一代纳米材料的方向迈出了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验