So Christopher R, Kulp John L, Oren Ersin Emre, Zareie Hadi, Tamerler Candan, Evans John Spencer, Sarikaya Mehmet
Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA.
ACS Nano. 2009 Jun 23;3(6):1525-31. doi: 10.1021/nn900171s.
The understanding of biomineralization and realization of biology-inspired materials technologies depends on understanding the nature of the chemical and physical interactions between proteins and biominerals or synthetically made inorganic materials. Recently, combinatorial genetic techniques permit the isolation of peptides recognizing specific inorganic materials that are used as molecular building blocks for novel applications. Little is known about the molecular structure of these peptides and the specific recognition mechanisms onto their counterpart inorganic surfaces. Here, we report high-resolution atomic force microscopy (AFM), molecular simulation (MS), and geometrical docking studies that detail the formation of an ordered supramolecular self-assembly of a genetically engineered gold binding peptide, 3rGBP(1) (MHGKTQATSGTIQS), correlating with the symmetry of the Au{111} surface lattice. Using simulated annealing molecular dynamics (SA/MD) studies based on nuclear magnetic resonance (NMR), we confirmed the intrinsic disorder of 3rGBP(1) and identified putative Au docking sites where surface-exposed side chains align with both the <110> and <211> Miller indices of the Au lattice. Our results provide fundamental insight for an atomistic understanding of peptide/solid interfaces and the intrinsic disorder that is inherent in some of these peptide sequences. Analogous to the well-established atomically controlled thin-film heterostructure formation on semiconductor substrates, the basis of today's microelectronics, the fundamental observations of peptide-solid interactions here may well form the basis of peptide-based hybrid molecular technologies of the future.
对生物矿化的理解以及受生物学启发的材料技术的实现,取决于对蛋白质与生物矿物质或合成无机材料之间化学和物理相互作用本质的理解。最近,组合遗传技术使得能够分离出识别特定无机材料的肽,这些肽被用作新型应用的分子构建块。关于这些肽的分子结构以及它们与相应无机表面的特异性识别机制,我们知之甚少。在此,我们报告了高分辨率原子力显微镜(AFM)、分子模拟(MS)和几何对接研究,这些研究详细阐述了一种基因工程金结合肽3rGBP(1)(MHGKTQATSGTIQS)形成有序超分子自组装的过程,该过程与Au{111}表面晶格的对称性相关。通过基于核磁共振(NMR)的模拟退火分子动力学(SA/MD)研究,我们证实了3rGBP(1)的内在无序性,并确定了推定的金对接位点,在这些位点,表面暴露的侧链与金晶格的<110>和<211>米勒指数对齐。我们的结果为从原子层面理解肽/固体界面以及这些肽序列中固有的内在无序性提供了基本见解。类似于在半导体衬底上形成的已确立的原子控制薄膜异质结构,这是当今微电子学的基础,此处对肽 - 固体相互作用的基本观察很可能构成未来基于肽的混合分子技术的基础。