Suppr超能文献

室温下具有高导通-关断电流比和大输运带隙的石墨烯场效应晶体管。

Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.

机构信息

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA.

出版信息

Nano Lett. 2010 Feb 10;10(2):715-8. doi: 10.1021/nl9039636.

Abstract

Graphene is considered to be a promising candidate for future nanoelectronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect transistors (FETs) cannot be turned off effectively due to the absence of a band gap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measurements suggest that a band gap up to a few hundred millielectronvolts can be created by the perpendicular E-field in bilayer graphenes. Although previous carrier transport measurements in bilayer graphene transistors did indicate a gate-induced insulating state at temperatures below 1 K, the electrical (or transport) band gap was estimated to be a few millielectronvolts, and the room temperature on/off current ratio in bilayer graphene FETs remains similar to those in single-layer graphene FETs. Here, for the first time, we report an on/off current ratio of around 100 and 2000 at room temperature and 20 K, respectively, in our dual-gate bilayer graphene FETs. We also measured an electrical band gap of >130 and 80 meV at average electric displacements of 2.2 and 1.3 V nm(-1), respectively. This demonstration reveals the great potential of bilayer graphene in applications such as digital electronics, pseudospintronics, terahertz technology, and infrared nanophotonics.

摘要

石墨烯因其出色的电子特性被认为是未来纳米电子学的有前途的候选材料。不幸的是,由于缺乏带隙,石墨烯场效应晶体管(FET)无法有效地关闭,导致顶栅石墨烯 FET 的导通/关断电流比通常约为 5。另一方面,理论研究和光学测量表明,通过双层石墨烯中的垂直 E 场可以产生高达数百毫电子伏特的带隙。尽管之前在双层石墨烯晶体管中的载流子输运测量表明在低于 1 K 的温度下存在栅极诱导的绝缘状态,但电(或传输)带隙估计为几毫电子伏特,并且双层石墨烯 FET 的室温导通/关断电流比仍类似于单层石墨烯 FET。在这里,我们首次报告了在室温下和 20 K 下分别约为 100 和 2000 的导通/关断电流比,在我们的双栅双层石墨烯 FET 中。我们还测量了在平均电位移分别为 2.2 和 1.3 V nm(-1) 时大于 130 和 80 meV 的电带隙。这一演示揭示了双层石墨烯在数字电子学、赝自旋电子学、太赫兹技术和红外纳米光子学等应用中的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验