PET/NIRF/MRI 三功能铁氧化物纳米颗粒。
PET/NIRF/MRI triple functional iron oxide nanoparticles.
机构信息
Department of Radiology, Biophysics and Bio-X Program, Stanford University, Stanford, CA, USA.
出版信息
Biomaterials. 2010 Apr;31(11):3016-22. doi: 10.1016/j.biomaterials.2010.01.010. Epub 2010 Jan 21.
Engineered nanoparticles with theranostic functions have attracted a lot of attention for their potential role in the dawning era of personalized medicine. Iron oxide nanoparticles (IONPs), with their advantages of being non-toxic, biodegradable and inexpensive, are candidate platforms for the buildup of theranostic nanostructures; however, progress in using them has been limited largely due to inefficient drug loading and delivery. In the current study, we utilized dopamine to modify the surface of IONPs, yielding nanoconjugates that can be easily encapsulated into human serum albumin (HSA) matrices (clinically utilized drug carriers). This nanosystem is well-suited for dual encapsulation of IONPs and drug molecules, because the encapsulation is achieved in a way that is similar to common drug loading. To assess the biophysical characteristics of this novel nanosystem, the HSA coated IONPs (HSA-IONPs) were dually labeled with (64)Cu-DOTA and Cy5.5, and tested in a subcutaneous U87MG xenograft mouse model. In vivo positron emission tomography (PET)/near-infrared fluorescence (NIRF)/magnetic resonance imaging (MRI) tri-modality imaging, and ex vivo analyses and histological examinations were carefully conducted to investigate the in vivo behavior of the nanostructures. With the compact HSA coating, the HSA-IONPs manifested a prolonged circulation half-life; more impressively, they showed massive accumulation in lesions, high extravasation rate, and low uptake of the particles by macrophages at the tumor area.
具有治疗诊断功能的工程纳米颗粒因其在个性化医学新纪元的潜在作用而备受关注。氧化铁纳米颗粒(IONPs)具有无毒、可生物降解和廉价等优点,是构建治疗诊断纳米结构的候选平台;然而,由于药物装载和输送效率低下,其应用进展受到了很大限制。在本研究中,我们利用多巴胺修饰 IONPs 的表面,得到了可以轻易包裹到人血清白蛋白(HSA)基质(临床上使用的药物载体)中的纳米缀合物。该纳米系统非常适合双重封装 IONPs 和药物分子,因为封装方式类似于常见的药物装载。为了评估这种新型纳米系统的生物物理特性,我们用 (64)Cu-DOTA 和 Cy5.5 双重标记了 HSA 包裹的 IONPs(HSA-IONPs),并在皮下 U87MG 异种移植小鼠模型中进行了测试。我们进行了仔细的体内正电子发射断层扫描(PET)/近红外荧光(NIRF)/磁共振成像(MRI)三模态成像,以及离体分析和组织学检查,以研究纳米结构的体内行为。由于紧凑的 HSA 涂层,HSA-IONPs 表现出延长的循环半衰期;更令人印象深刻的是,它们在病变部位大量积累,具有高的外渗率,以及肿瘤区域中巨噬细胞对颗粒的摄取率低。