文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于肿瘤多模态成像的放射性标记纳米陶瓷及相关生物材料的功能多样性

Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors.

作者信息

Calatayud David G, Lledos Marina, Casarsa Federico, Pascu Sofia I

机构信息

Department of Inorganic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain.

Department of Electroceramics, Instituto de Cerámica y Vidrio, Madrid 28049, Spain.

出版信息

ACS Bio Med Chem Au. 2023 Aug 8;3(5):389-417. doi: 10.1021/acsbiomedchemau.3c00021. eCollection 2023 Oct 18.


DOI:10.1021/acsbiomedchemau.3c00021
PMID:37876497
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10591303/
Abstract

Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.

摘要

纳米技术的进步有可能助力疾病的早期检测,提高诊断准确性并有助于实现个性化治疗,尤其是在癌症等非传染性疾病(NCDs)的情况下。纳米颗粒作为纳米医学的支撑框架,其主要优势在于具有呈现多功能性的潜力:用于纳米医学的合成纳米平台可以进行定制,以支持一系列与临床实践相关的生物医学成像模式,例如光学成像、计算机断层扫描(CT)、磁共振成像(MRI)、单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)。单个纳米颗粒有可能包含无数的造影剂单元或成像示踪剂,封装和/或与不同组合的成像标签结合,从而为多模态诊断方法提供手段。这些配置已被证明能显著提高分子成像技术可能获得的信噪比,例如,在使用纳米材料的PET诊断成像中与分子物种作为放射性示踪剂的情况相比。我们调查了在高度动力学稳定的放射性纳米材料中同时掺入纳米颗粒材料和成像剂作为具有(临床前)潜力的潜在示踪剂的一些主要发现。探讨了功能的多样性以及合成、放射性标记和显微镜研究方面的新进展,并强调了分子成像中的临床前应用。重点是处于主要临床前发展前沿的生物相容性材料,例如纳米陶瓷和基于脂质体的构建体,它们在过去十年中推动了诊断性放射性纳米医学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/a8993da75adf/bg3c00021_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/499f8fbb70aa/bg3c00021_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/812a7efd8810/bg3c00021_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/d2ec09f581ab/bg3c00021_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/63d0085925a5/bg3c00021_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/404841a5d07f/bg3c00021_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/e366cf720251/bg3c00021_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/bd55d2de6bfa/bg3c00021_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/502983db7cad/bg3c00021_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/ba21067a2ad6/bg3c00021_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/770e27aa825d/bg3c00021_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/a78dd84b24c0/bg3c00021_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/16a275993c9f/bg3c00021_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/c0e37a29de24/bg3c00021_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/bcbf3e0b5e16/bg3c00021_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/33864419acdb/bg3c00021_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/a8993da75adf/bg3c00021_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/499f8fbb70aa/bg3c00021_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/812a7efd8810/bg3c00021_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/d2ec09f581ab/bg3c00021_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/63d0085925a5/bg3c00021_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/404841a5d07f/bg3c00021_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/e366cf720251/bg3c00021_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/bd55d2de6bfa/bg3c00021_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/502983db7cad/bg3c00021_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/ba21067a2ad6/bg3c00021_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/770e27aa825d/bg3c00021_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/a78dd84b24c0/bg3c00021_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/16a275993c9f/bg3c00021_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/c0e37a29de24/bg3c00021_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/bcbf3e0b5e16/bg3c00021_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/33864419acdb/bg3c00021_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a03/10591303/a8993da75adf/bg3c00021_0017.jpg

相似文献

[1]
Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors.

ACS Bio Med Chem Au. 2023-8-8

[2]
Advanced Methods for Radiolabeling Multimodality Nanomedicines for SPECT/MRI and PET/MRI.

J Nucl Med. 2017-10-12

[3]
Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications.

Cancer Imaging. 2024-9-20

[4]
Magnetic resonance imaging (MRI) for the assessment of myocardial viability: an evidence-based analysis.

Ont Health Technol Assess Ser. 2010

[5]
Positron emission tomography imaging using radiolabeled inorganic nanomaterials.

Acc Chem Res. 2015-2-17

[6]
Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis.

Biomaterials. 2020-1

[7]
An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions.

J Biomed Mater Res A. 2018-10-25

[8]
Nanoparticles and radiotracers: advances toward radionanomedicine.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016-11

[9]
Multimodality imaging in nanomedicine and nanotheranostics.

Cancer Biol Med. 2016-9

[10]
Multimodality imaging: beyond PET/CT and SPECT/CT.

Semin Nucl Med. 2009-9

引用本文的文献

[1]
Rare Earths-Doped and Ceria-Coated Strontium Aluminate PlateletsVersatile Luminescent Platforms for Correlated Lifetime Imaging by Multiphoton FLIM and PLIM.

ACS Omega. 2025-4-29

[2]
Protein-functionalized and intrinsically radiolabeled [Re]ReO nanoparticles: advancing cancer therapy through concurrent radio-photothermal effects.

Eur J Nucl Med Mol Imaging. 2025-1-25

本文引用的文献

[1]
Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers.

Front Chem. 2022-4-12

[2]
Biocompatible Probes Based on Rare-Earth Doped Strontium Aluminates with Long-Lasting Phosphorescent Properties for In Vitro Optical IMAGING.

Int J Mol Sci. 2022-3-21

[3]
Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations.

Nanomaterials (Basel). 2022-1-6

[4]
Recent Advances in Nanomaterials Development for Nanomedicine and Cancer.

ACS Appl Bio Mater. 2021-8-16

[5]
Liposome delivery to the brain with rapid short-pulses of focused ultrasound and microbubbles.

J Control Release. 2022-1

[6]
Nanoparticles for Cancer Therapy: Current Progress and Challenges.

Nanoscale Res Lett. 2021-12-5

[7]
Recent Progress in Technetium-99m-Labeled Nanoparticles for Molecular Imaging and Cancer Therapy.

Nanomaterials (Basel). 2021-11-10

[8]
Nanoparticles for Cancer Diagnosis, Radionuclide Therapy and Theranostics.

ACS Nano. 2021-11-23

[9]
Metallodrugs are unique: opportunities and challenges of discovery and development.

Chem Sci. 2020-11-12

[10]
Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation.

ACS Appl Bio Mater. 2021-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索