Calatayud David G, Lledos Marina, Casarsa Federico, Pascu Sofia I
Department of Inorganic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain.
Department of Electroceramics, Instituto de Cerámica y Vidrio, Madrid 28049, Spain.
ACS Bio Med Chem Au. 2023 Aug 8;3(5):389-417. doi: 10.1021/acsbiomedchemau.3c00021. eCollection 2023 Oct 18.
Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.
纳米技术的进步有可能助力疾病的早期检测,提高诊断准确性并有助于实现个性化治疗,尤其是在癌症等非传染性疾病(NCDs)的情况下。纳米颗粒作为纳米医学的支撑框架,其主要优势在于具有呈现多功能性的潜力:用于纳米医学的合成纳米平台可以进行定制,以支持一系列与临床实践相关的生物医学成像模式,例如光学成像、计算机断层扫描(CT)、磁共振成像(MRI)、单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)。单个纳米颗粒有可能包含无数的造影剂单元或成像示踪剂,封装和/或与不同组合的成像标签结合,从而为多模态诊断方法提供手段。这些配置已被证明能显著提高分子成像技术可能获得的信噪比,例如,在使用纳米材料的PET诊断成像中与分子物种作为放射性示踪剂的情况相比。我们调查了在高度动力学稳定的放射性纳米材料中同时掺入纳米颗粒材料和成像剂作为具有(临床前)潜力的潜在示踪剂的一些主要发现。探讨了功能的多样性以及合成、放射性标记和显微镜研究方面的新进展,并强调了分子成像中的临床前应用。重点是处于主要临床前发展前沿的生物相容性材料,例如纳米陶瓷和基于脂质体的构建体,它们在过去十年中推动了诊断性放射性纳米医学的发展。
ACS Bio Med Chem Au. 2023-8-8
Ont Health Technol Assess Ser. 2010
Acc Chem Res. 2015-2-17
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016-11
Cancer Biol Med. 2016-9
Semin Nucl Med. 2009-9
Eur J Nucl Med Mol Imaging. 2025-1-25
Front Chem. 2022-4-12
ACS Appl Bio Mater. 2021-8-16
J Control Release. 2022-1
Nanoscale Res Lett. 2021-12-5
Nanomaterials (Basel). 2021-11-10
ACS Nano. 2021-11-23