Suppr超能文献

关于分析重复实验的秩和检验方法的评论。

Comments on the rank product method for analyzing replicated experiments.

机构信息

Department of Molecular and Experimental Medicine, The Scripps Research Institute, MEM216, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.

出版信息

FEBS Lett. 2010 Mar 5;584(5):941-4. doi: 10.1016/j.febslet.2010.01.031. Epub 2010 Jan 20.

Abstract

Breitling et al. introduced a statistical technique, the rank product method, for detecting differentially regulated genes in replicated microarray experiments. The technique has achieved widespread acceptance and is now used more broadly, in such diverse fields as RNAi analysis, proteomics, and machine learning. In this note, we relate the rank product method to linear rank statistics and provide an alternative derivation of distribution theory attending the rank product method.

摘要

布赖特林等人引入了一种统计技术,即秩乘积方法,用于检测重复微阵列实验中差异调节的基因。该技术已被广泛接受,现在更广泛地应用于 RNAi 分析、蛋白质组学和机器学习等不同领域。在本说明中,我们将秩乘积方法与线性秩统计相关联,并提供与秩乘积方法相关的分布理论的替代推导。

相似文献

1
Comments on the rank product method for analyzing replicated experiments.
FEBS Lett. 2010 Mar 5;584(5):941-4. doi: 10.1016/j.febslet.2010.01.031. Epub 2010 Jan 20.
2
The rank product method with two samples.
FEBS Lett. 2010 Nov 5;584(21):4481-4. doi: 10.1016/j.febslet.2010.10.012. Epub 2010 Oct 14.
3
A cautionary note on the rank product statistic.
FEBS Lett. 2016 Jun;590(11):1586-91. doi: 10.1002/1873-3468.12194. Epub 2016 Jun 1.
4
The exact probability distribution of the rank product statistics for replicated experiments.
FEBS Lett. 2013 Mar 18;587(6):677-82. doi: 10.1016/j.febslet.2013.01.037. Epub 2013 Feb 8.
5
Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments.
Bioinformatics. 2003 Jun 12;19(9):1046-54. doi: 10.1093/bioinformatics/btf879.
6
Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data.
J Bioinform Comput Biol. 2005 Oct;3(5):1171-89. doi: 10.1142/s0219720005001442.
7
RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis.
Bioinformatics. 2006 Nov 15;22(22):2825-7. doi: 10.1093/bioinformatics/btl476. Epub 2006 Sep 18.
10
Identifying differentially expressed genes from microarray experiments via statistic synthesis.
Bioinformatics. 2005 Apr 1;21(7):1084-93. doi: 10.1093/bioinformatics/bti108. Epub 2004 Oct 28.

引用本文的文献

1
Characterizing the targets of transcription regulators by aggregating ChIP-seq and perturbation expression data sets.
Genome Res. 2023 May;33(5):763-778. doi: 10.1101/gr.277273.122. Epub 2023 Jun 12.
4
peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data.
Nucleic Acids Res. 2018 Sep 6;46(15):e91. doi: 10.1093/nar/gky443.
5
Identification of influential observations in high-dimensional cancer survival data through the rank product test.
BioData Min. 2018 Feb 14;11:1. doi: 10.1186/s13040-018-0162-z. eCollection 2018.
6
OptPipe - a pipeline for optimizing metabolic engineering targets.
BMC Syst Biol. 2017 Dec 21;11(1):143. doi: 10.1186/s12918-017-0515-0.
8
Construction of protein interaction network involved in lung adenocarcinomas using a novel algorithm.
Oncol Lett. 2016 Sep;12(3):1792-1800. doi: 10.3892/ol.2016.4822. Epub 2016 Jul 7.
9
Classification of autistic individuals and controls using cross-task characterization of fMRI activity.
Neuroimage Clin. 2015 Nov 17;10:78-88. doi: 10.1016/j.nicl.2015.11.010. eCollection 2016.
10
A Simple Rank Product Approach for Analyzing Two Classes.
Bioinform Biol Insights. 2015 Jul 16;9:119-23. doi: 10.4137/BBI.S26414. eCollection 2015.

本文引用的文献

1
Statistical methods for analysis of high-throughput RNA interference screens.
Nat Methods. 2009 Aug;6(8):569-75. doi: 10.1038/nmeth.1351.
2
The yeast vacuolar membrane proteome.
Mol Cell Proteomics. 2009 Feb;8(2):380-92. doi: 10.1074/mcp.M800372-MCP200. Epub 2008 Nov 10.
3
A classification model for the Leiden proteomics competition.
Stat Appl Genet Mol Biol. 2008;7(2):Article8. doi: 10.2202/1544-6115.1351. Epub 2008 Feb 19.
4
A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments.
Bioinformatics. 2008 Feb 1;24(3):374-82. doi: 10.1093/bioinformatics/btm620. Epub 2008 Jan 18.
5
RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis.
Bioinformatics. 2006 Nov 15;22(22):2825-7. doi: 10.1093/bioinformatics/btl476. Epub 2006 Sep 18.
7
Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data.
J Bioinform Comput Biol. 2005 Oct;3(5):1171-89. doi: 10.1142/s0219720005001442.
8
A note on generalized Genome Scan Meta-Analysis statistics.
BMC Bioinformatics. 2005 Feb 17;6:32. doi: 10.1186/1471-2105-6-32.
10
A note on the genome scan meta-analysis statistic.
Ann Hum Genet. 2004 Jul;68(Pt 4):376-80. doi: 10.1046/j.1529-8817.2004.00103.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验