Suppr超能文献

使用功能磁共振成像活动的跨任务特征对自闭症个体和对照组进行分类。

Classification of autistic individuals and controls using cross-task characterization of fMRI activity.

作者信息

Chanel Guillaume, Pichon Swann, Conty Laurence, Berthoz Sylvie, Chevallier Coralie, Grèzes Julie

机构信息

Swiss Center for Affective Sciences, Campus Biotech, University of Geneva, Geneva, Switzerland; Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland.

Swiss Center for Affective Sciences, Campus Biotech, University of Geneva, Geneva, Switzerland; Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.

出版信息

Neuroimage Clin. 2015 Nov 17;10:78-88. doi: 10.1016/j.nicl.2015.11.010. eCollection 2016.

Abstract

Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations.

摘要

多变量模式分析(MVPA)已成功应用于基于任务和基于静息状态的功能磁共振成像(fMRI)记录,以研究哪些神经标志物能够区分自闭症谱系障碍(ASD)个体与对照组。虽然大多数研究集中于静息状态下的脑连接以及感兴趣区域方法(ROI),但在过去十年中,这些人群已经获取了大量基于任务的fMRI数据集。这就需要能够不仅利用单个数据集,而且利用可能共享一些共同特征和生物标志物的多个现有数据集的技术。我们提出了一种完全数据驱动(基于体素)的方法,并将其应用于两个不同的带有社会刺激(面部和身体)的fMRI实验。该方法基于支持向量机(SVM)和递归特征消除(RFE),首先针对每个实验独立进行训练,然后将每个输出进行合并以获得最终的分类输出。其次,该RFE输出用于确定哪些体素最常被选择用于分类,以生成显著判别活动的图谱。最后,为了进一步探索该方法的临床有效性,我们将表型信息与获得的分类器分数进行关联。结果显示出良好的分类准确率(范围在69%至92.3%之间)。此外,我们能够识别与社会脑相关的判别活动模式,而无需依赖先验的ROI定义。最后,社会动机是唯一与分类器分数相关的维度,这表明它是分类器所捕捉的主要维度。总体而言,我们认为当前的RFE方法证明是有效的,并且通过利用在精神疾病人群中获取的基于任务的fMRI数据集,可能有助于识别相关的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1557/4683429/a41927616a0e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验