Suppr超能文献

内含子剪接代码:ATM 假外显子定义中的多个因素。

The intronic splicing code: multiple factors involved in ATM pseudoexon definition.

机构信息

Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.

出版信息

EMBO J. 2010 Feb 17;29(4):749-60. doi: 10.1038/emboj.2009.397. Epub 2010 Jan 21.

Abstract

Abundance of pseudo splice sites in introns can potentially give rise to innumerable pseudoexons, outnumbering the real ones. Nonetheless, these are efficiently ignored by the splicing machinery, a process yet to be understood completely. Although numerous 5' splice site-like sequences functioning as splicing silencers have been found to be enriched in predicted human pseudoexons, the lack of active pseudoexons pose a fundamental challenge to how these U1snRNP-binding sites function in splicing inhibition. Here, we address this issue by focusing on a previously described pathological ATM pseudoexon whose inhibition is mediated by U1snRNP binding at intronic splicing processing element (ISPE), composed of a consensus donor splice site. Spliceosomal complex assembly demonstrates inefficient A complex formation when ISPE is intact, implying U1snRNP-mediated unproductive U2snRNP recruitment. Furthermore, interaction of SF2/ASF with its motif seems to be dependent on RNA structure and U1snRNP interaction. Our results suggest a complex combinatorial interplay of RNA structure and trans-acting factors in determining the splicing outcome and contribute to understanding the intronic splicing code for the ATM pseudoexon.

摘要

内含子中大量的假剪接位点可能会产生无数的假外显子,数量超过真正的外显子。尽管如此,这些假外显子被剪接机制有效地忽略了,这个过程还没有被完全理解。虽然已经发现了许多类似于 5' 剪接位点的序列,作为剪接沉默子富集在预测的人类假外显子中,但缺乏活性的假外显子对这些 U1snRNP 结合位点在剪接抑制中的作用提出了一个基本的挑战。在这里,我们通过关注一个先前描述的病理性 ATM 假外显子来解决这个问题,该假外显子的抑制是由 U1snRNP 在由一致的供体位点组成的内含子剪接加工元件(ISPE)处结合介导的。剪接体复合物的组装表明,当 ISPE 完整时,A 复合物的形成效率低下,这意味着 U1snRNP 介导的非生产性 U2snRNP 的募集。此外,SF2/ASF 与其基序的相互作用似乎依赖于 RNA 结构和 U1snRNP 的相互作用。我们的结果表明,在决定剪接结果方面,RNA 结构和反式作用因子之间存在复杂的组合相互作用,并有助于理解 ATM 假外显子的内含子剪接密码。

相似文献

1
The intronic splicing code: multiple factors involved in ATM pseudoexon definition.
EMBO J. 2010 Feb 17;29(4):749-60. doi: 10.1038/emboj.2009.397. Epub 2010 Jan 21.
2
Functional studies on the ATM intronic splicing processing element.
Nucleic Acids Res. 2005 Jul 19;33(13):4007-15. doi: 10.1093/nar/gki710. Print 2005.
3
RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events.
Nucleic Acids Res. 2007;35(13):4369-83. doi: 10.1093/nar/gkm447. Epub 2007 Jun 18.
4
Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
Plant J. 2012 Sep;71(6):936-47. doi: 10.1111/j.1365-313X.2012.05042.x. Epub 2012 Jun 28.
5
Interaction of hnRNPA1/A2 and DAZAP1 with an Alu-derived intronic splicing enhancer regulates ATM aberrant splicing.
PLoS One. 2011;6(8):e23349. doi: 10.1371/journal.pone.0023349. Epub 2011 Aug 8.
6

引用本文的文献

2
A Deep Intronic Variant Activates a Pseudoexon in the Gene in a Family with X-Linked Myotubular Myopathy.
Mol Syndromol. 2020 Dec;11(5-6):264-270. doi: 10.1159/000510286. Epub 2020 Sep 16.
3
A U1i RNA that Enhances HIV-1 RNA Splicing with an Elongated Recognition Domain Is an Optimal Candidate for Combination HIV-1 Gene Therapy.
Mol Ther Nucleic Acids. 2019 Dec 6;18:815-830. doi: 10.1016/j.omtn.2019.10.011. Epub 2019 Oct 18.
4
Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons.
Nucleic Acids Res. 2017 Jan 9;45(1):417-434. doi: 10.1093/nar/gkw733. Epub 2016 Aug 26.
5
Lessons from non-canonical splicing.
Nat Rev Genet. 2016 Jul;17(7):407-421. doi: 10.1038/nrg.2016.46. Epub 2016 May 31.
6
A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila.
Genes Dev. 2015 Apr 1;29(7):760-71. doi: 10.1101/gad.258863.115.
8
A day in the life of the spliceosome.
Nat Rev Mol Cell Biol. 2014 Feb;15(2):108-21. doi: 10.1038/nrm3742.
9
Role of pseudoexons and pseudointrons in human cancer.
Int J Cell Biol. 2013;2013:810572. doi: 10.1155/2013/810572. Epub 2013 Sep 24.
10
RNA splicing: a new player in the DNA damage response.
Int J Cell Biol. 2013;2013:153634. doi: 10.1155/2013/153634. Epub 2013 Sep 12.

本文引用的文献

1
Transposable elements in disease-associated cryptic exons.
Hum Genet. 2010 Feb;127(2):135-54. doi: 10.1007/s00439-009-0752-4. Epub 2009 Oct 10.
3
Low U1 snRNP dependence at the NF1 exon 29 donor splice site.
FEBS J. 2009 Apr;276(7):2060-73. doi: 10.1111/j.1742-4658.2009.06941.x.
4
Alu exonization events reveal features required for precise recognition of exons by the splicing machinery.
PLoS Comput Biol. 2009 Mar;5(3):e1000300. doi: 10.1371/journal.pcbi.1000300. Epub 2009 Mar 6.
5
RNA and disease.
Cell. 2009 Feb 20;136(4):777-93. doi: 10.1016/j.cell.2009.02.011.
6
The spliceosome: design principles of a dynamic RNP machine.
Cell. 2009 Feb 20;136(4):701-18. doi: 10.1016/j.cell.2009.02.009.
7
A nonsense exon in the Tpm1 gene is silenced by hnRNP H and F.
RNA. 2009 Jan;15(1):33-43. doi: 10.1261/rna.1225209. Epub 2008 Nov 26.
8
Polypyrimidine tract binding protein regulates alternative splicing of an aberrant pseudoexon in NF1.
FEBS J. 2008 Dec;275(24):6101-8. doi: 10.1111/j.1742-4658.2008.06734.x. Epub 2008 Nov 1.
9
Alternative splicing and disease.
Biochim Biophys Acta. 2009 Jan;1792(1):14-26. doi: 10.1016/j.bbadis.2008.09.017. Epub 2008 Oct 17.
10
Alternative isoform regulation in human tissue transcriptomes.
Nature. 2008 Nov 27;456(7221):470-6. doi: 10.1038/nature07509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验