Suppr超能文献

利用NAD(P)H的光谱分辨荧光寿命光谱法评估活心肌细胞中的线粒体代谢氧化状态

[Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].

作者信息

Cheng Ying, Ren Mingming, Niu Yanyan, Qiao Jianhua, Aneba S, Chorvat D, Chorvatova A

机构信息

Department of Cardiovascular Surgery, Shenzhen Hospital, Beijing University, Shenzhen 518036, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 Dec;26(6):1191-200.

Abstract

The primary function of cardiac mitochondria is the production of ATP to support heart contraction. Examination of the mitochondrial redox state is therefore crucially important to sensitively detect early signs of mitochondrial function in pathophysiological conditions, such as ischemia, diabetes and heart failure. We study fingerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H, the principal electron donor in mitochondrial respiration responsible for vital ATP supply. Here NAD(P)H is studied as a marker for non-invasive fluorescent probing of the mitochondrial function. NAD(P) H fluorescence is recorded in cardiac cells following excitation with 375nm UV-light and detection by spectrally-resolved time-correlated single photon counting (TCSPC), based on the simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. Modulation of NADH production and/or mitochondrial respiration is tested to study dynamic characteristics of NAD(P) H fluorescence decay. Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns and 8.0-13. Ons lifetime pools is necessary to describe cardiomyocyte autofluorescence (AF) within 420-560nm spectral range. Increased mitochondrial NADH production by ketone bodies enhanced the fluorescence intensity, without significant change in fluorescent lifetimes. Rotenone, the inhibitor of Complex I of the mitochondrial respiratory chain, increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol (DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence lifetime. These effects are comparable to the study of NADH fluorescence decay in vitro. In the present contribution we demonstrated that spectrally-resolved fluorescence lifetime technique provides promising new tool for analysis of mitochondrial NAD(P) H fluorescence with good reproducibility in living cardiomyocytes. This approach will enhance our knowledge about cardiomyocyte oxidative metabolism and/or its dysfunction at a cellular level. In the future, this approach can prove helpful in the clinical diagnosis and treatment of mitochondrial disorder.

摘要

心脏线粒体的主要功能是产生三磷酸腺苷(ATP)以支持心脏收缩。因此,检查线粒体氧化还原状态对于灵敏地检测病理生理状况(如缺血、糖尿病和心力衰竭)中线粒体功能的早期迹象至关重要。我们利用对线粒体呼吸中负责重要ATP供应的主要电子供体烟酰胺腺嘌呤二核苷酸(磷酸)(NAD(P)H)进行光谱分辨荧光寿命光谱法,研究活体心肌细胞中线粒体代谢氧化状态的指纹图谱。在此,NAD(P)H被作为线粒体功能非侵入性荧光探测的标志物进行研究。在用375nm紫外光激发并通过光谱分辨时间相关单光子计数(TCSPC)进行检测后,记录心脏细胞中的NAD(P)H荧光,该检测基于对荧光光谱和荧光寿命的同步测量。通过测试NADH产生和/或线粒体呼吸的调节来研究NAD(P)H荧光衰减的动态特性。我们的结果表明,在420 - 560nm光谱范围内,至少需要一个具有0.4 - 0.7ns、1.2 - 1.9ns和8.0 - 13ns寿命池的三指数衰减模型来描述心肌细胞自发荧光(AF)。酮体增加线粒体NADH的产生会增强荧光强度,但荧光寿命无显著变化。线粒体呼吸链复合体I的抑制剂鱼藤酮增加了AF强度并缩短了平均荧光寿命。线粒体氧化磷酸化解偶联剂二硝基苯酚(DNP)降低了AF强度,拓宽了520nm处的光谱峰肩并增加了平均荧光寿命。这些效应与体外NADH荧光衰减的研究结果相当。在本研究中,我们证明光谱分辨荧光寿命技术为分析活体心肌细胞中线粒体NAD(P)H荧光提供了一种有前景的新工具,且具有良好的重现性。这种方法将增进我们在细胞水平上对心肌细胞氧化代谢及其功能障碍的认识。未来,这种方法可能有助于线粒体疾病的临床诊断和治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验