Suppr超能文献

基于核的语义标注框架的基于内容的组织病理学图像检索。

Content-based histopathology image retrieval using a kernel-based semantic annotation framework.

机构信息

Computer Systems and Industrial Engineering Department, National University of Colombia, Bogotá, Colombia.

出版信息

J Biomed Inform. 2011 Aug;44(4):519-28. doi: 10.1016/j.jbi.2011.01.011. Epub 2011 Feb 3.

Abstract

Large amounts of histology images are captured and archived in pathology departments due to the ever expanding use of digital microscopy. The ability to manage and access these collections of digital images is regarded as a key component of next generation medical imaging systems. This paper addresses the problem of retrieving histopathology images from a large collection using an example image as query. The proposed approach automatically annotates the images in the collection, as well as the query images, with high-level semantic concepts. This semantic representation delivers an improved retrieval performance providing more meaningful results. We model the problem of automatic image annotation using kernel methods, resulting in a unified framework that includes: (1) multiple features for image representation, (2) a feature integration and selection mechanism (3) and an automatic semantic image annotation strategy. An extensive experimental evaluation demonstrated the effectiveness of the proposed framework to build meaningful image representations for learning and useful semantic annotations for image retrieval.

摘要

由于数字显微镜的广泛应用,大量的组织学图像被捕获并归档在病理科。能够管理和访问这些数字图像集被认为是下一代医学成像系统的关键组成部分。本文通过使用示例图像作为查询,解决了从大型图像库中检索组织病理学图像的问题。所提出的方法可以自动地对图像库中的图像以及查询图像进行高级语义概念的标注。这种语义表示提高了检索性能,提供了更有意义的结果。我们使用核方法对自动图像标注问题进行建模,从而得到了一个统一的框架,其中包括:(1)用于图像表示的多种特征;(2)特征集成和选择机制;(3)以及自动的语义图像标注策略。广泛的实验评估证明了所提出的框架在构建用于学习的有意义的图像表示和用于图像检索的有用语义标注方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验