Hynninen Paavo H, Kaartinen Vesa, Kolehmainen Erkki
Department of Chemistry, Laboratory of Organic Chemistry, A.I. Virtasen Aukio 1, University of Helsinki, Finland.
Biochim Biophys Acta. 2010 May;1797(5):531-42. doi: 10.1016/j.bbabio.2010.01.017. Epub 2010 Jan 25.
Horseradish peroxidase was verified to catalyze, without any phenol, the hydrogen peroxide oxidation of chlorophyll a (Chl a), solubilized with Triton X-100. The 13(2)(S) and 13(2)(R) diastereomers of 13(2)-hydroxyChl a were characterized as major oxidation products (ca. 60%) by TLC on sucrose, UV-vis, (1)H, and (13)C NMR spectra, as well as fast-atom bombardment MS. A minor amount of the 15(2)-methyl, 17(3)-phytyl ester of Mg-unstable chlorin was identified on the basis of its UV-vis spectrum and reactivity with diazomethane, which converted it to the 13(1),15(2)-dimethyl, 17(3)-phytyl ester of Mg-purpurin 7. The side products (ca. 10%) were suggested to include the 17(3)-phytyl ester of Mg-purpurin 18, which is known to form easily from the Mg-unstable chlorin. The side products also included two red components with UV-vis spectral features resembling those of pure Chl a enolate anion. Hence, the two red components were assigned to the enolate anions of Chl a and pheophytin a or, alternatively, two different complexes of the Chl a enolate ion with Triton X-100. All the above products characterized by us are included in our published free-radical allomerization mechanism of Chl a, i.e. oxidation by ground-state dioxygen. The HRP clearly accelerated the allomerization process, but it did not produce bilins, that is, open-chain tetrapyrroles, the formation of which would require oxygenolysis of the chlorin macrocycle. In this regard, our results are in discrepancy with the claim by several researchers that 'bilirubin-like compounds' are formed in the HRP-catalyzed oxidation of Chl a. Inspection of the likely reactions that occurred on the distal side of the heme in the active centre of HRP provided a reasonable explanation for the observed catalytic effect of the HRP on the allomerization of Chl. In the active centre of HRP, the imidazole nitrogen of His-42 was considered to play a crucial role in the C-13(2) deprotonation of Chl a, which resulted in the Chl a enolate ion resonance hybrid. The Chl enolate was then oxidized to the Chl 13(2)-radical while the HRP Compound I was reduced to Compound II. The same reactive Chl derivatives, i.e. the Chl enolate anion and the Chl 13(2)-radical, which are produced twice in the HRP reaction cycle, happen to be the crucial intermediates in the initial stages of the Chl allomerization mechanism.
已证实辣根过氧化物酶在没有任何苯酚的情况下,能催化用 Triton X - 100 增溶的叶绿素 a(Chl a)的过氧化氢氧化反应。通过蔗糖薄层层析、紫外 - 可见光谱、(1)H 和(13)C 核磁共振光谱以及快原子轰击质谱,13(2)-羟基叶绿素 a 的 13(2)(S)和 13(2)(R)非对映异构体被鉴定为主要氧化产物(约 60%)。基于其紫外 - 可见光谱以及与重氮甲烷的反应活性,鉴定出少量的 Mg - 不稳定二氢卟吩的 15(2)-甲基、17(3)-植醇酯,重氮甲烷将其转化为 Mg - 紫红素 7 的 13(1),15(2)-二甲基、17(3)-植醇酯。推测副产物(约 10%)包括 Mg - 紫红素 18 的 17(3)-植醇酯,已知它很容易由 Mg - 不稳定二氢卟吩形成。副产物还包括两种红色成分,其紫外 - 可见光谱特征类似于纯叶绿素 a 烯醇负离子的光谱特征。因此,这两种红色成分被归属为叶绿素 a 和脱镁叶绿素 a 的烯醇负离子,或者是叶绿素 a 烯醇离子与 Triton X - 100 的两种不同络合物。我们所鉴定的上述所有产物都包含在我们已发表的叶绿素 a 的自由基异构化机制中,即基态双氧的氧化作用。辣根过氧化物酶明显加速了异构化过程,但它没有产生胆素,即开链四吡咯,其形成需要二氢卟吩大环的氧解作用。在这方面,我们的结果与几位研究人员声称在辣根过氧化物酶催化的叶绿素 a 氧化反应中形成“胆红素样化合物”的说法不一致。对辣根过氧化物酶活性中心血红素远端可能发生的反应进行研究,为观察到的辣根过氧化物酶对叶绿素异构化的催化作用提供了合理的解释。在辣根过氧化物酶的活性中心,His - 42 的咪唑氮被认为在叶绿素 a 的 C - 13(2)去质子化过程中起关键作用,这导致了叶绿素 a 烯醇离子共振杂化物的形成。然后叶绿素烯醇被氧化为叶绿素 13(2)-自由基,而辣根过氧化物酶化合物 I 被还原为化合物 II。在辣根过氧化物酶反应循环中产生两次的相同活性叶绿素衍生物,即叶绿素烯醇负离子和叶绿素 13(2)-自由基,恰好是叶绿素异构化机制初始阶段的关键中间体。